Update for New Implementations

As new implementations of the Itanium architecture are announced, we attempt to post appropriate updates on the support page for *Itanium* Architecture for Programmers: Understanding 64-Bit Processors and EPIC Principles at http://www.viika.com/itanium/.

While we tried to write an architecture book that would be largely unaffected by future developments, Chapter 13 suggested why that goal might be difficult indeed.

This electronic appendix contains additional or revised information that should be read in conjunction with the book itself. Sections in this appendix are of the form U.4.5.1, etc., for ease of correlation with the text.

Copyright © 2006 James S. Evans and Gregory L. Trimper

U.4.5.1 Itanium Cache Structures

When new implementations of the Itanium architecture were released in 2003 to 2006 (formerly code-named Madison), the *Intel Itanium 2 Processor Reference Manual for Software Development and Optimization* was revised. Certain previously published descriptions of the Itanium 2 implementations released in 2002 (formerly code-named McKinley) changed also. Table U.4–3 reflects these changes.

	Total Size	Line Size	Туре	Replace Policy	Write Policy	Load Latency Cycles*		
Level						Integer	Floating	Instruction
L1-I	16 KiB	64 B	4-way	LRU	n/a	n/a	n/a	1
L1-D	16 KiB	64 B	4-way	NRU	write- through	1	n/a	n/a
L2	256 KiB	128 B	8-way	NRU	write- back	5, 7, 9	6, 8, 10	7, 9, 11
L3	up to 9 MiB	128 B	up to 24- way	NRU	write- back	12–14+	21–23+	14+
Memory	up to 1 PiB					>100	> 100	> 100

Table U.4-3 Characteristics of Itanium 2 Memory Hierarchy

*See Intel Itanium 2 Processor Reference Manual for Software Development and Optimization, revised 2004, for details about implementation differences.

The dual-core Itanium 2 implementation first released in 2006, code name Montecito, has separate L2-I (1 MiB) and L2-D (256 KiB) caches and a unified L3 cache (12 MiB per core). Other characteristics of the caches are similar to entries in Table U.4–3, although certain special cases will perform better in practice.

Copyright © 2006 James S. Evans and Gregory L. Trimper

U.13.3.1 Comparison to the Itanium 2 Processors

Table U.13–1 compares the first Itanium processor and two Itanium 2 processor implementations along several key dimensions. We will not define or discuss every entry in this table, but we wanted to present a diverse set of measures customarily used for comparisons in the industry, as well as a few Itanium-specific characteristics to contrast these implementations.

	Itanium	Itaniu	ım 2	
Code name during development	Merced	McKinley	Madison	
Year of market release	2001	2002	2003	
Chip technology:				
speeds marketed	733, 800 MHz	0.9, 1.0 GHz	1.3 to 1.7 GHz	
process feature size	180 nm (Al)	180 nm (Al)	130 nm (Cu)	
transistor count	25×10^{6}	221×10^6	$>= 400 \times 10^{6}$	
layers	6	6	6	
die size			374 mm ²	
operating voltage	1.6 V	1.5 V	1.3 V	
power (including cache)	116–130 W	130 W	130 W*	
cache bandwidth		32 GB/s		
Processor features:				
physical stacked registers	96	96		
RSE modes	only enforced lazy	only enforced lazy		
integer units	2 M and 2 I	4 M and 2 I		
memory units	2 load or store	2 load and 2 store		
parallel floating-point units	2	1		
Pipeline depth:				
integer	10	8		
floating-point	12	10		
Memory support:				
physical address bits	44	50		
virtual address bits	54	64		
data bus width	64 bits	128 bits		
maximum page size	256 MiB	4 GiB		
System bus:				

 Table U.13–1
 Selected Characteristics of Itanium Processor Implementations

Copyright © 2006 James S. Evans and Gregory L. Trimper

	Itanium	Itani	um 2
speed	133 MHz	200 MHz	up to 667 MHz
width	64 bits	128 bits	
bandwidth	2.1 GB/s	3.2 GB/s	up to 10.6 GB/s
Instruction differences:			
brl instruction	emulated in op sys	implemented	
brp instruction	useful	affects instruction prefetching	
chk.a or chk.s handling	needs the op sys	usually done by hardware	
L3 cache location	off-chip, in-package on-		chip

*Lower for some chips with less cache and lower speeds.

The dual-core Itanium 2 implementation first released in 2006, code name Montecito, has a feature size of 90 nm, 1.7×10^9 transistors, 1.6 GHz processor speed, up to 533 MHz front-side system bus speed, and 104 W power dissipation. This new implementation introduces a small number of new instructions (see *Dual-Core Update to the Intel Itanium 2 Processor Reference Manual for Software Development and Optimization*).

Other new features include a capability to support up to two threads per core (temporal hyperthreading), and some support for virtualization technology (hosting of multiple operating systems on one multi-processor computer installation).

Threads share the functional units (datapath pipelines), but each has its own architectural state information (i.e., registers) and thus appears to an operating system as a complete processor. This minimizes overhead of context changes at the operating system level. Since the time delay for thread switching is only 15 cycles (shorter than all cache hit intervals), it will be L3 cache misses that primarily trigger thread switching sooner than the expiration of a thread's time quantum as assigned by the operating system.

U.13.5IA-32 Compatibility

The Itanium and Itanium 2 processors listed in Table U–13–1 contain a dedicated unit to decode and expand complex IA-32 instructions into simpler operations that can be carried out as special cases in the standard Itanium execution units. This strategy resembles the way in which later Pentium processor implementations themselves break many of the complex IA-32 CISC instructions into simpler operations that are passed to a RISC-like core in the CPU for execution

With the IA-32 capability, an Itanium computer can run 32-bit operating systems. More importantly, 64-bit operating systems on Itanium-based computers can launch and run either 32-bit applications or native 64-bit applications. (According to information from

IA-32 Compatibility

Hewlett-Packard Company, an Itanium 2 processor in IA-32 mode offers a performance level comparable to a 300-MHz Pentium Pro.)

Intel Corporation has also developed the IA-32 Execution Layer (IA-32 EL) software to emulate the full IA-32 instruction set. This layer plugs into an operating system and offers improved performance over the intrinsic hardware capability of Itanium processors. (According to information from Intel Corporation, an Itanium 2 processor with the IA-32 Execution Layer added to the operating system offers a performance level comparable to a Xeon processor having the same nominal clock speed.)

The dual-core Itanium 2 implementation first released in 2006, code name Montecito, has dropped the hardware IA-32 compatibility mode. It seems unlikely that any from future Itanium processor implementations would revive that capability, since software emulation has proven to be superior.

U.13.6Determining Extensions and Implementation Version

Once an architecture acquires extensions, the need arises for compilers, operating systems, and system boot-up code to be able to determine the characteristics of a particular machine configuration.

The Itanium architecture provides a set of cpuid registers (Appendix D.8) that software can read. The cpuid register 3 has 8-bit fields specifying the architecture revision, the processor family, the processor model number, the processor revision number, and the highest implemented index number for the cpuid registers (at least 4). Bits <31:24> encode the processor family and bits <23:16> encode the model number. Table U.13–6 correlates these code values to the code names used during development of the various processor implementations and to a primary differentiating characteristic, the maximum amount of on-chip L3 cache.

Family	Model	Maximum L3 Cache	Code Name	Description
0x07	0x00		Merced	Itanium
0x1f	0x00	3 MiB	McKinley	
0x1f	0x01	6 MiB		Itanium 2
0x1f	0x02	9 MiB	Madison	
0x20	0x00		Montecito	Dual-core Itanium 2

Table U.13-6 Identification of Itanium Processors

Copyright © 2006 James S. Evans and Gregory L. Trimper

Fields in cpuid register 4 indicate application-level features as a set of flag bits for presence (1) or absence (0) of each feature. For example, bit 0 indicates whether the processor implements the brl instruction (e.g., Itanium 2 processor) or the operating system must provide emulation when that opcode causes an exception (e.g., initial Itanium processor). Similarly, bit 2 indicates whether the 16-byte atomic operations (ldl6, stl6, and cmp8xchq16) are implemented.

REFERENCES

- Baraz, Leonid, Tevi Devor, Orna Etzion, Shalom Goldenberg, Alex Skaletsky, Yun Wang, and Yigal Zemach, IA-32 Execution Layer: a two-phase dynamic translator designed to support IA-32 applications on Itanium-based systems, 2004 [cited 30 September 2006]. Available from http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/itanium/93086.htm.
- Intel Corporation, Dual-Core Update to the Intel Itanium 2 Processor Reference Manual for Software Development and Optimization, 2006.
- Intel Corporation, Intel Itanium 2 Processor Reference Manual for Software Development and Optimization, revised 2004.
- Intel Corporation, Intel Itanium Processor Family Reference Guide: IA-32 Execution Layer, 2004 [cited 30 May 2004]. Available from http://www.intel.com/design/Itanium/Downloads/254318.htm.
- Microsoft Corporation, *Microsoft Windows Server 2003*, "The IA-32 Execution Layer 4.3 Software Driver," 2004 [cited 30 May 2004]. Available from http://www.microsoft.com/windowsserver2003/64bit/ipf/ia32el.mspx.
- Stinson, Jason, and Stefan Rusu, A 1.5GHz Third Generation Itanium Processor, ISSCC-2003, 2003 [cited 2 July 2003]. Available from http://developer.intel.com/design/itanium2/download/14_4_slides_r31_nsn.htm.