
Inverting a Differential OperatorConsider the BVP - ddx(k(x) dudx)= f(x)u(a) = dudx (b) = 0It is possible to show that the differential operatorL u = - ddx(k(x) dudx)is a symmetric operator on the space Cm2[a,b] of twice continuously differentiable functions that satisfy mixedboundary conditions u(a) = d ud x (b) = 0 on the interval [a,b].Our goal is to develop a linear operator M that maps the space of functions C[a,b] to the space Cm2[a,b] in such away thatM f = u whenever L u = f.M is the inverse operator to L in the sense thatL M f = L u = fand M L u =M f = uWe will see that in order to construct the inverse of the differential operator L we will have to use an integraloperator that takes the form u =M f = ∫ ba G(x; y) f(y) d yThe function G(x ; y) is called the kernel of the linear operatorM, or the Green's function for the linear differentialoperator L.A Simple ExampleTo demonstrate that it is indeed possible to invert a differential operator into an integral operator, we start with asimple example. The differential operator L u = - ddx(k(x) dudx)is directly invertible by integration: - ddx(k(x) dudx)= f(x)we integrate both sides with respect to x from x to b: 1



∫ bx f(y) d y = ∫ bx - ddx(k(x) dudx)d x = ∫ xb ddx(k(x) dudx)d x = k(x) dudx (x) - k(b) dudx (b) = k(x) dudx (x)dudx (x) = k(x)1 ∫ bx f(y) d yIntegrating a second time on both sides from a to x gives∫ xa dudx (z) d z = u(x) - u(a) = u(x) = ∫ xa k(z)1 ∫ bz f(y) d y d zBy interchanging the order of the z and y integrals on the right we getu(x) = ∫ ba (∫ min(x,y)a k(z)1 d z)f(y) d yWe now see that the expression G(x ; y) = ∫ min(x,y)a k(z)1 d zallows us to cast this solution in the form of an integral operator:u(x) =M f = ∫ ba G(x ; y) f(y) d yOne final comment about this example. The one thing that allowed the problem to slide through as readily as it didwas the special boundary condition dudx (b) = 0. In fact, if we tried to impose the more conventional boundarycondition of u(b) = 0 we would find that the mathematics of computing the Green's function becomes much moredifficult.AMore Ambitious ExampleNext we turn to a more challenging BVP - ddx(P(x) dudx)+ R(x) u = F(x)u(a) = u(b) = 0This is such a challenging problem that we have to assume that we are provided with a little help. Suppose we havealready solved the homogeneous form of the this problem- ddx(P(x) dudx)+ R(x) u = 0and have obtained two linearly independent solutions v1(x) and v2(x). To use the solutions of the homogeneousproblem to help us solve the nonhomogeneous problem, we deploy the method of variation of parameters. Thismethod assumes that the solution to the nonhomogeneous problem takes the form2



u(x) = c1(x) v1(x) + c2(x) v2(x)We proceed by differentiating this function with respect to x and then substituting into the equation. The first step isto compute the derivative of u(x) with respect to x:dudx = c1(x) dv1dx + c2(x) dv2dx + dc1dx v1(x) + dc2dx v2(x)Because this expression will lead to a mess, we exercise our ability to place constraints on the coefficient functionsc1(x) and c1(x) by demanding that part of this expression vanish:dc1dx v1(x) + dc2dx v2(x) = 0This immediately causes the expression for du/dx to simplify todudx = c1(x) dv1dx + c2(x) dv2dxSubstituting this simplified expression into the ODE gives- ddx(P(x) (c1(x) dv1dx + c2(x) dv2dx ))+ R(x) (c1(x) v1(x) + c2(x) v2(x))= F(x)differentiating on the left gives us- dPdx (c1(x) dv1dx + c2(x) dv2dx ) - P(x) (c1(x) d2v1dx2 + c2(x) d2v2dx2 + dc1dx dv1dx + dc1dx dv2dx )+ R(x) (c1(x) v1(x) + c2(x) v2(x)) = F(x)After reorganizing the terms on the left, we get something like this:(- c1(x) dPdx dv1dx - c1(x) P(x) d2v1dx2 + c1(x) R(x) v1(x))+(- c2(x) dPdx dv2dx - c2(x) P(x) d2v2dx2 + c2(x) R(x) v2(x)) -P(x) (dc1dx dv1dx + dc1dx dv2dx )= F(x)or c1(x) (- ddx(P(x) dv1dx )+ R(x) v1(x))+ c2(x) (- ddx(P(x) dv2dx )+ R(x) v2(x))-P(x) (dc1dx dv1dx + dc1dx dv2dx )= F(x)3



Because the functions v1(x) and v2(x) are both solutions of the homogeneous problem, the first two sets of termsvanish and we are left with -P(x) (dc1dx dv1dx + dc1dx dv2dx )= F(x)We now have two equations to solve, the condition we imposed earlier, and this new equation:dc1dx v1(x) + dc2dx v2(x) = 0-P(x) (dc1dx dv1dx + dc2dx dv2dx )= F(x)Close examination of this pair of equations shows that this can be written as a system of equations.v1(x)dv1dx v2(x)dv2dx dc1dxdc2dx = 0-F(x)/P(x)This system can be solved by multiplying both sides by the inverse of the matrix on the left.dc1dxdc2dx = v1(x)dv1dx v2(x)dv2dx -1 0-F(x)/P(x)
= dv2dx v1(x) - dv1dx v2(x)1 dv2dx-dv1dx -v2(x)v1(x) 0-F(x)/P(x)The quantity W(x) = dv2dx v1(x) - dv1dx v2(x)is known as theWronskian of the functions v1(x) and v2(x). The Wronskian has a number of special properties. Oneof these properties is that if v1(x) and v2(x) are linearly independent functions on [a,b] then W(x) for all x in [a,b].Another useful property is that if v1(x) and v2(x) are solutions of the homogeneous problem then the function W(x)P(x) is actually a constant over the entire interval. We can see this by computing its derivative with respect to x:ddx(W(x) P(x))=W′(x) P(x) +W(x) P′(x)P(x) d2v2dx2 v1(x) - P(x) d2v1dx2 v2(x) + P(x) dv2dx dv1dx - P(x) dv1dx dv2dx + P′(x)dv2dx v1(x) - P′(x)dv1dx v2(x)
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= v1(x) (P(x) d2v2dx2 + P′(x)dv2dx ) - v2(x) (P(x) d2v1dx2 + P′(x)dv1dx )+ (P(x) dv2dx dv1dx - P(x) dv1dx dv2dx )The last of these terms vanishes. As for the other two terms, adding and subtracting some terms R(x) v1(x) v2(x)gives = v1(x) (P(x) d2v2dx2 + P′(x)dv2dx - R(x) v2(x)) - v2(x) (P(x) d2v1dx2 + P′(x)dv1dx - R(x) v1(x))+ 0= 0 + 0 + 0Thus, the quantity W(x) P(x) is a constant over the entire interval, so we can replace it with 1/k where it appears inthe matrix equation we derive earlier. We now havedc1dxdc2dx = v1(x)dv1dx v2(x)dv2dx -1 0-F(x)/P(x)
= dv2dx v1(x) - dv1dx v2(x)1 dv2dx-dv1dx -v2(x)v1(x) 0-F(x)/P(x)

=W(x)1 dv2dx-dv1dx -v2(x)v1(x) 0-F(x)/P(x)
= dv2dx-dv1dx -v2(x)v1(x) 0-F(x)/(W(x)P(x))

= dv2dx-dv1dx -v2(x)v1(x) 0-kF(x)or dc1dxdc2dx = k v2(x) F(x)- k v1(x) F(x)This now leads to expressions for c1(x) and c2(x): 5



c1(x) = ∫ xa k v2(x) F(x) d x + a1c2(x) = ∫ bx k v1(x) F(x) d x + a2Notice the trick we played with the second integral to effectively absorb the minus sign.The last step is to bring in the boundary conditionsu(a) = u(b) = 0to determine what the unknown constants a1 and a2 are. Applying the first boundary condition yields0 = u(a) = c1(a) v1(a) + c2(a) v2(a)= (∫ aa k v2(x) F(x) d x + a1)v1(a) + (∫ ba k v1(x) F(x) d x + a2) v2(a)= a1 v1(a) + (∫ ba k v1(x) F(x) d x + a2) v2(a)We can get this to equal 0 by imposing two conditions:v1(a) = 0a2 = -∫ ba k v1(x) F(x) d xSimilarly, 0 = u(b) = c1(b) v1(b) + c2(b) v2(b)= (∫ ba k v2(x) F(x) d x + a1)v1(b) + (∫ bb k v1(x) F(x) d x + a2) v2(b)= (∫ ba k v2(x) F(x) d x + a1)v1(b) + a2 v2(b)This leads us to impose conditions v2(b) = 0a1 = -∫ ba k v2(x) F(x) d xAn obvious question here is whether we are in fact free to impose the conditionsv1(a) = 0v2(b) = 06



We can get away with this, because at the start of the process we simply demanded that v1(x) and v2(x) be solutionsto the homogeneous problem and that they be linearly independent. A little reflection will make it clear that we arefree to impose these additional conditions without violating independence.We now go on to write out the full solution.u(x) = c1(x) v1(x) + c2(x) v2(x)= (∫ xa k v2(y) F(y) d y-∫ ba k v2(y) F(y) d y) v1(x) + (∫ bx k v1(y) F(y) d x-∫ ba k v1(y) F(y) d y) v2(x)= (-∫ bx k v2(y) F(y) d y) v1(x) + (- ∫ xa k v1(y) F(y) d y) v2(x)If we define G(x ; y) ={-k v1(y) v2(x)-k v2(y) v1(x) y ≤ xy > xthis takes the desired form: u(x) = ∫ ba G(x ; y) F(y) d yInterpreting the Green's FunctionWe have just seen that in some cases it is possible to invert a differential operator L and solve an ODEL u = fby expressing the solution via an integral operator.u = L-1 f = ∫ ba G(x ; y) f(y) d yAn important observation about this integral operator is that it is a linear operator. For example, suppose that itwere possible to write the function f(x) as a combination of two functions with separate support.f(x) = f1(x) + f2(x)By linearity of the integral operator, we could then write the solution as a combination of two pieces.u(x) = u1(x) + u2(x) = ∫ ba G(x ; y) f1(y) d y + ∫ ba G(x ; y) f2(y) d yIn this situation we say that the term ∫ ba G(x ; y) f1(y) d ymodels the influence of f1(x) on the solution, while 7



∫ ba G(x ; y) f2(y) d ymodels the influence of f2(x) on the solution.Now consider an obvious generalization of this idea. Suppose we introduce a functiondΔ(x) = ⎧
⎩⎨
⎪⎪⎪⎪⎪⎪ (Δx)2x + Δx- (Δx)2x - Δx0

-Δx < x < 00 ≤ x < ΔxotherwiseThis is a "spike" function with a base of width 2 Δx and height 1/Δx. We can translate this spike to differentlocations by forming translates dΔ(x - ξ).These spike functions are reminiscent of the basis functions we used for the finite element method. In particular, wecan use spike functions to construct approximations for smooth functions.f(x) ≈∑i = 1n fi dΔ(x - ξi)where the points ξi for i = 1 to n are some set of evenly spaced sample points on the interval [a,b]. Writing theforcing function f(x) as a linear combination of spike functions allows us to approximate the solution to Lu = f byu(x) ≈∑i = 1n fi (∫ ba G(x ; y) dΔ(y - ξi) d y)What can we say about the term ∫ ba G(x ; y) dΔ(y - ξi) d ythat appears here? Since the spike function has a very narrow support centered on the point y = ξi, what we appearto be computing here is a weighted average of the function G(x ; y) in the immediate neighborhood of y = ξi. In thelimit as Δy→0, we should expect this weighted average to converge to the value of G(x ; y) at y = ξi, G(x ; ξi).G(x ; ξ) = limΔ→0 ∫ ba G(x ; y) dΔ(y - ξ) d yFurther properties of dΔ(x)We can further formalize some of the ideas from the previous section by making some observations about thebehavior of the function dΔ(x - ξ) and its limit as Δx→0, δ(x-ξ).∫ ba dΔ(x - ξ) d x = 18



∫ ba δ(x - ξ) d x = 1∫ ba g(x) dΔ(x - ξ) d x ≈ g(ξ)∫ ba g(x) δ(x - ξ) d x = g(ξ)This last property of δ(x-ξ) is the most interesting for our purposes:∫ ba G(x ; y) δ(y - ξ) d y = G(x ; ξ)This observation leads to the following important interpretation of the Green's function:G(x ; y) is the response of the system to a forcing function f(x) = δ(x-y)The significance of this observation is that in many cases we can predict what the response of the system we aremodeling will be to such an impulse without having to explicitly solve the differential equation. That alternativereasoning will lead us directly to an expression for the Green's function, and once we have that Green's function wecan write the solution to L u = f directly as u(x) = ∫ ba G(x ; y) f(y) d yComputing Green's functions directlyTo see an example of how we can compute a Green's function directly, let us return to the problem of the hangingbar. In the simplest version of this problem, the function k(x) reduces to a constant k and we have to solve theproblem -k d2udx2 = f(x)u(0) = 0dudx (l) = 0The Green's function method asks us to predict the response of this system to a forcing function that takes the formf(x) = δ(x - ξ), where ξ is some point between 0 and l.
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ξu(ξ) 1
The physical interpretation of this situation is very simple. We are applying one unit of force concentrated over aninfinitely thin range of contact centered at x = ξ. Since the bar has a uniform Hooke's constant of k, we can easilycompute how the bar will respond to this situation. The portion of the bar between 0 and ξ will stretch uniformly inaccordance with the underlying physical principlestress = k strainor 1 = k ξu(ξ)or u(ξ) = kξAt points x with 0 ≤ x ≤ ξ, the bar will experience an amount of stretching which is proportional to the ratio x/ξ:u(x) = kxAt points x with ξ ≤ x ≤ l the bar will experience no stretching, only displacement:u(x) = kξWe can summarize this by saying that the response of this system to a forcing function δ(x - ξ) is
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G(x ; ξ) ={x/kξ/k x < ξx ≥ ξWe can then use this Green's function to compute the response of this system to any forcing function f(x):u(x) = ∫ l0 G(x ; y) f(y) d y = ∫ l0 f(y){x/ky/k y > xy ≤ x d y = ∫ x0 y/k f(y) d y + ∫ lx x/k f(y) d yNote that we can also express this Green's function as an integral:G(x ; y) = ∫ min(x,y)0 k1 d yIn this form it matches the Green's function we computed at the start of these notes.A second exampleConsider now a slight variant of the problem above.-k d2udx2 = f(x)u(0) = 0u(l) = 0In this version of the problem, the bar is fixed at both ends instead of being fixed only at the top and free to move atthe bottom.If we replay the physics of the situation above
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ξu(ξ) 1
with the modification that the bottom end is now fixed, we see that once again the portion of the bar between x = 0and x = ξ will experience stretching, while the portion of the bar between x = ξ and x = l is compressed. Thismeans that bar will "push back" against the external force with two force terms: one is the stress on the upper partof the bar which is being stretched and the other is the stress on the lower part of the bar which is beingcompressed. 1 = k ξu(ξ) + k l - ξu(ξ)Solving this for u(ξ) produces u(ξ) = k lξ (l - ξ)Once again, the parts of the bar between x = 0 and x = ξ will be displaced by a proportional amount:u(x) = k lx (l - ξ) , 0 ≤ x ≤ ξThe portions below x = ξ will also be displaced downward by a proportional amount:u(x) = k lξ (l - x) , ξ ≤ x ≤ lThis now gives us a Green's function for this version of the problem:G(x ; ξ) = ⎧⎩⎨⎪⎪⎪⎪ k lx (l - ξ)k lξ (l - x) x < ξx ≥ ξ12



Recasting this as an integral G(x ; ξ) = ⎧⎩⎨⎪⎪∫ x0 (l-ξ)/(l k) d z∫ lx ξ/(k l) d z x < ξx ≥ ξeven allows us to make an educated guess about the form of the Green's function for the more general problem- ddx(k(x) dudx)= f(x)u(0) = u(l) = 0that we found so difficult to solve earlier:G(x ; ξ) = ⎧⎩⎨⎪⎪∫ x0 (l-ξ)/(l k(z)) d z∫ lx ξ/(k(z) l) d z x < ξx ≥ ξ
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