Roots and fixed points of vector-valued functions

A function g(x) from R” to R” has a fixed point at p if g(p) = p.
Here is a fixed point theorem for vector-valued functions.

Theorem Let D be a closed, convex region in R”. Suppose g(x) is a continuous function that maps D into D. Then
g(x) has a fixed point p in D. Further, suppose that all the component functions of g(x) have continuous first
partial derivatives in all variables and there is a constant K < 1 such that
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for all i and j and all x in D. Then any sequence of iterates
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starting from any x(¥) in D converges to a unique fixed point p in D and
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Newton's Method
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be a function from R” to R". We say that f(x) has a root at x if f(x) = 0.

We are going to try to construct a root finding algorithm by constructing an argument that is analagous to the
argument in chapter 2 that led to Newton's method.

Here is an analog of a theorem we saw in chapter 2.
Theorem Let p be a solution of g(x) = x. Suppose that a number 6 > 0 exists with
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Then a number < § exists such that the sequence generated by x¥) = g(x*-D) converges quadratically to p for any
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choice of x(©, provided that Ix® - pll < 8. Moreover,
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for each k > 1.

We can use this theorem to construct Newton's method on R” by seeking an n by n matrix function ¢(x) such that

g(x) =x - p(x) f(x)

satisfies the conditions of the theorem. We take partial derivatives of the coordinate functions of g(x) and see that
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When p is a root of f(x), p is a fixed point of g(x) and we would like to have
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If we look closely at these conditions, they tell us that the matrix @(p) is the inverse of the matrix of partial

derivatives
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evaluated at x = p. This matrix is the Jacobian matrix for the function f(x) whose root we are trying to find.

The Newton iteration formula is
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