The nonlinear boundary value problem
The general nonlinear boundary value problem is
Y0 = fley@).y ()
ya)=a

y(b)=p

In the method of finite differences we seek an approximate solution to this boundary value problem by setting up a

grid of N + 2 equally spaced points x; with x, = a and x| = b:

h=_b-a
N+1
x;=a+ih

The method seeks to compute estimates for y(x;) at each of the interior points x; for i ranging from 1 to N by
replacing the derivative terms with finite difference estimates and solving a set of equations. Specifically, we

replace the term y”(x;) with an O(hz) centered difference formula

Yy - 2 y() + y(xy) h_2 YA(E)
h2 12

y " (Xl-) —

and we replace the term y/(xl-) with an O(hz) centered difference formula

Y1) - i) h_2 y(S)(m)

V) =
2h 6

Making these substitutions gives

Y - 209 + Y ) =f<xi7 ¥, Yo - y(xi.1>>
n? 2h
If f(x,y,y") is a nonlinear function, this is a coupled, nonlinear system of equations in the N unknowns y(x;). If we

let w; be the solution of this equation for y(x;) for each of these i values with wy = a and wy,; = 5, we get a

coupled system of nonlinear equations in w, through wy:

Wi - 2wt wi +f<xi’ w,, Wikl ~ Wi—l) =0

B 2h

Our problem has now degenerated to a root-finding problem. We seek the root of a function

gl(wl’ Wz, ceey WN)
g(w) = go(wy, Wy, ..o Wy)
gN(Wl’ Wz, ceey WN)



where

gk(Wl’ Wo, oy WN) =- Wht1 - 2 Wk + Wik-1 +f Xies Wi M
2 2h

and wy = a and wy, = f.
Solving the system of equations

To solve the nonlinear root-finding problem we employ Newton's method for functions from R" to R".
wh) = wkD) _ -1k Dy g(wk-D)
where the Jacobian matrix is

dg,(w) ag,(W) ... dg,(W) |

0W1 0W2 aWN
082(W) 0gy(W) ... 985(W)
J(X) = ()W] 0W2 0WN

0gN(W) 0gn(W) ... dgn(W)
an 0W2 0WN

One fact working to our advantage here is that g;(w) is independent of w, for k < j-1 and k > j+1. This means that
the Jacobian matrix is tri-diagonal.

Another optimization we can make here is to note that we don't have to compute the inverse of the Jacobian to

compute the term
J WD) gwikD)
instead, we can solve the equation
J(whD)z= gwikD)

for z and then compute

wh = Wk _ 4
Since the Jacobian matrix is tri-diagonal, we can apply a Crout factorization to it to get

JwkD)y=LU
and then solve

Ly= gwk)

and



a
N
I

<

Summary of the method

Fix wy = a and wy,; = f and set w, through wy to starting values. (Interpolating linearly between a and f is a

good choice.) This generates w(®,
Now repeat the following steps until lig(w®)Il drops below a desired tolerance.
1. Compute the tridiagonal Jacobian matrix J (w*D),

2. Use Crout factorization to obtain

JwkDy=rLU
3. Use back substitution to solve for y:

Ly= gwth)

4. Use back substitution to solve for z:

5. Compute
w(k) — w(k‘l) -7
Extrapolation

For the same reasons as applied in the linear case, these results can be improved by extrapolation. The technique is
exactly the same: we compute a set of w; values for a given step size /4, and then compute a second set for a step

size of h/2 and throw away every other w;. We then form extrapolated w; values

) = w + ot



