
Improving on interpolation

In earlier sections we saw several techniques for interpolating a function. Given a set of n+1 data points (x0, f(x0)),
(x1, f(x1)), ... , (xn, f(xn)) we can construct an nth degree polynomial that interpolates those points.

One limitation of this scheme is that the polynomial we construct is only constrained to agree with the function at
the n+1 sample points. In principle, we could produce better results if we could force the polynomial and its first
derivative to agree with the value of f(x) and its first derivative f′(x) at a series of sample points. The technique of
Hermite polynomials accomplishes this goal.

Here is a theorem that shows how this is possible.

Theorem (Hermite Interpolation) If f ∈ C1[a,b] and x0, x1, …, xn ∈ [a,b] are distinct, the unique polynomial of
least degree agreeing with f and f′ at x0, x1, …, xn is the Hermite polynomial of degree at most 2 n + 1 given by

H2n+1(x) =∑
j = 0

n

f(xj) Hn,j(x) +∑
j = 0

n

f′(xj) H
‸

n,j(x)

where, for Ln,j(x) denoting the jth Lagrange basis function for the given data points, we have

Hn,j(x) = [1 - 2 (x - xj) L′n,j(xj)] L2
n,j(x)

H
‸

n,j(x) = (x - xj) L2
n,j(x)

Moreover, if f ∈ C2n+2[a,b], then

f(x) = H2n+1(x) +
(2 n + 2)!

(x - x0)
2(x - x1)

2 ⋯ (x - xn)
2

f(2n+2)(ξ(x))

for some ξ(x) ∈ [a,b].

Proof Just as the basis functions were constructed to vanish at each interpolation point except one, the functions
Hn,j(x) and H

‸
n,j(x) are constructed to have special behavior at the interpolation points. Specifically, if i ≠ j we have

Hn,j(xi) = [1 - 2 (xi - xj) L′n,j(xj)] L2
n,j(xi) = 0

H
‸

n,j(xi) = (xi - xj) L2
n,j(xi) = 0

Further, since the derivatives

(Hn,j)′(x) = [- 2 L′n,j(xj) ] L2
n,j(x) + [1 - 2 (x - xj) L′n,j(xj)] 2 Ln,j(x) L′n,j(x)

(H
‸

n,j)′(x) = L2
n,j(x) + (x - xj) 2 Ln,j(x) L′n,j(x)

satisfy

(Hn,j)′(xi) = [- 2 L′n,j(xj) ] L2
n,j(xi) + [1 - 2 (xi - xj) L′n,j(xj)] 2 Ln,j(xi) L′n,j(xi) = 0 + 0

1



(H
‸

n,j)′(xi) = L2
n,j(xi) + (xi - xj) 2 Ln,j(xi) L′n,j(xi) = 0 + 0

For i = j we have

Hn,j(xj) = [1 - 2 (xj - xj) L′n,j(xj)] L2
n,j(xj) = 1 1 = 1

H
‸

n,j(xj) = (xj - xj) L2
n,j(xj) = 0 1 = 0

and

(Hn,j)′(xj) = [- 2 L′n,j(xj) ] L2
n,j(xj) + [1 - 2 (xj - xj) L′n,j(xj)] 2 Ln,j(xj) L′n,j(xj)

= - 2 L′n,j(xj) + 2 L′n,j(xj) = 0

(H
‸

n,j)′(xj) = L2
n,j(xj) + (xj - xj) 2 Ln,j(xj) L′n,j(xj) = 1

To summarize,

Hn,j(xi)

H
‸

n,j(xi)

(Hn,j)′(xi)

(H
‸

n,j)′(xi)

i ≠ j
0

0

0

0

i = j
1

0

0

1

Thus

H2n+1(xi) =∑
j = 0

n

f(xj) Hn,j(xi) +∑
j = 0

n

f′(xj) H
‸

n,j(xi) = f(xi)

and

(H2n+1)′(xi) =∑
j = 0

n

f(xj) (Hn,j)′(xi) +∑
j = 0

n

f′(xj) (H
‸

n,j)′(xi) = f′(xi)

The error formula part of the proof is an exercise.

Computing the Hermite Polynomials

Just as the original formula for Lagrange polynomials proved too unwieldy to use and had to be replaced with
Neville's method and the Newton formulas, we also want to replace the clunky formulas above with something
better.

This method is based on the observation that for any one of the interpolation points xi we have

2



lim
ε→0 ε

f(xi + ε) - f(xi) = f′(xi)

Expressed in the language of divided differences, this says

lim
ε→0

f [xi,xi+ε] = f′(xi)

What would happen if we tried to use the usual Newton forward difference method to interpolate f(x) at sample
points (x0, f(x0)), (x0+ε, f(x0+ε)), (x1, f(x1)), (x1+ε, f(x1+ε)), ... , (xn, f(xn)), (xn+ε, f(xn+ε))?

First of all, since we have more sample points, we should expect to produce a polynomial of higher degree: degree
2 n + 1 to be exact. To construct the polynomial we would use a forward difference table:

x
x0

x0 + ε

x1

x1 + ε

x2

x2 + ε

f(x)
f[x0] = f(x0)

f[x0+ε] = f(x0+ε)

f[x1] = f(x1)

f[x1+ε] = f(x1+ε)

f[x2] = f(x2)

f[x2+ε] = f(x2+ε)

First diff.

f[x0,x0+ε]

f[x0+ε,x1]

f[x1,x1+ε]

f[x1+ε,x2]

f[x2,x2+ε]

Second diff.

f[x0,x0+ε,x1] = x1 - x0
f[x0+ε,x1] - f[x0,x0+ε]

f[x0+ε,x1,x1+ε] =
x1 - x0

f[x1,x1+ε] - f[x0+ε,x1]

f[x1,x1+ε,x2] = x2 - x1
f[x1+ε,x2] - f[x1,x1+ε]

f[x1+ε,x2,x2+ε] =
x2 - x1

f[x2,x2+ε] - f[x1+ε,x2]

Passing to the limit as ε → 0 gives us

3



x
x0

x0 + ε

x1

x1 + ε

x2

x2 + ε

f(x)
f[x0] = f(x0)

f[x0] = f(x0)

f[x1] = f(x1)

f[x1] = f(x1)

f[x2] = f(x2)

f[x2] = f(x2)

First diff.

f′(x0)

f[x0,x1]

f′(x1)

f[x1,x2]

f′(x2)

Second diff.

f[x0,x0,x1] = x1 - x0
f[x0,x1] - f ′(x0)

f[x0,x1,x1] = x1 - x0
f ′(x1) - f[x0,x1]

f[x1,x1,x2] = x2 - x1
f[x1,x2] - f ′(x1)

f[x1,x2,x2] = x2 - x1
f ′(x2) - f[x1,x2]

Notice that once we get past the first differences there will no longer be a problem with division by 0, and we can
form the remaining differences in the usual way.

The first few terms in the Newton formula then become

P(x) =

f[x0] + f[x0,x0](x - x0) + f[x0,x0,x1](x - x0)(x - x0)+ f[x0,x0,x1,x1](x - x0)(x - x0)(x - x1)

= f(x0) + f′(x0) (x - x0) + x1 - x0
f[x0,x1] - f′(x0) (x - x0)

2 + ⋯

I leave it as an exercise for you to confirm that this polynomial and its first derivative match f(x) and its derivative
at the interpolation points.

4


