
Error Estimates for Euler-like Methods

We have seen that nth order Taylor methods have error estimates of O(hn) for steps of size h. The problem with this
information is that it only tells us that the error we make in a single step of the method is proportional to hn.
However, without knowledge of the constant of proportionality we can not compute an absolute error estimate.

The following method demonstrates how we can develop a more concrete error estimate.

Consider an nth order Euler-like estimate

yi+1 ≈ yi + h φ(ti , h, yi)

We can express the error in this estimate by introducing a truncation error function τi+1(h) and writing

(1)y(ti+1) = yi + h φ(ti , h, yi) + h τi+1(h)

If we know that the truncation error is O(hn), all we can say at this point is that

τi+1(h) = K hn

Without specific knowledge of the constant of proportionality K we can not compute the absolute size of the error.
Hence, we have no way of knowing whether or not the step size h that we have chosen is small enough to produce
the desired error.

Here is a clever method to estimate the size of the actual error. Suppose we have at our disposal a second
Euler-like estimate

y~i+1 ≈ yi + h φ~(ti , h, yi)

of order hn+1 with truncation error term τ~i+1(h). This allows us to write

(2)y(ti+1) = yi + h φ~(ti , h, yi) + h τ~i+1(h)

Introduce wi = yi and terms

wi+1 = wi + h φ(ti , h, yi)

w~i+1 = wi + h φ~(ti , h, yi)

In terms of these new variables equations (1) and (2) become

y(ti+1) = wi+1 + h τi+1(h)

y(ti+1) = w~i+1 + h τ~i+1(h)

Setting these two equations equal to each other and solving for τi+1(h) gives

1

τi+1(h) =
h

w~i+1 - wi+1 + τ~i+1(h)

Noting that the higher order error estimate τ~i+1(h) is a factor of h smaller than τi+1(h) we see that most of the error
must come from the first term on the right. This leads to a concrete estimate for the error term τi+1(h):

τi+1(h) ≈
h

w~i+1 - wi+1

Adjusting the step size to hit a required error tolerance

Now that we have a more concrete error estimate to work with we can use it to adjust our step size h to have the
error fall below a desired tolerance ε. Our main tool for adjusting the error up or down is to manipulate the step
size. Specifically, we can ask what happens to the error term when we replace the original step size h with a new
step size q h. Since we know that the method we are using is an O(hn) method we can see that

τi+1(q h) ≈ K (q h)
n
= qn K hn ≈ qn τi+1(h) ≈ qn

h
w~i+1 - wi+1

Thus to force the error term below the desired tolerance ε we need

qn

h
w~i+1 - wi+1 < ε

or

q < (w~i+1 - wi+1

h ε)
1/n

The Runge-Kutta-Fehlberg method

To apply the strategy above we need to two multi-step methods, a first method of order n and a second method of
order n+1. One approach would be to use the Runge-Kutta method of order 4 in combination with a method of
order 5. This would work, but would typically require a total of 9 function evaluations per step. The
Runge-Kutta-Fehlberg method uses an order 4 method in combination with an order 5 method, where the two
methods are cleverly chosen to reuse function evaluations between the two methods. Specifically, we use a four
stage method

wi+1 = wi +
216
25 k1 +

2565
1408 k3 +

4104
2197 k4 -

5
1 k5

and a five stage method

w~i+1 = wi +
135
16 k1 +

12825
6656 k3 +

56430
28561 k4 -

50
9 k5 +

55
2 k6

where

2

k1 = h f(ti , wi)

k2 = h f(ti +
4
1 h , wi +

4
1 k1)

k3 = h f(ti +
8
3 h , wi +

32
3 k1 +

32
9 k2)

k4 = h f(ti +
13
12 h , wi +

2197
1932 k1 -

2197
7200 k2 +

2197
7296 k3)

k5 = h f(ti + h , wi +
216
439 k1 - 8 k2 +

513
3680 k3 -

4104
845 k4)

k6 = h f(ti +
2
1 h , wi -

27
8 k1 + 2 k2 -

2565
3544 k3 +

4104
1859 k4 -

40
11 k5)

Note that these method share a lot of stages, which reduces the total work needed.

To apply our error correction method, we first compute the error estimate

r =
h

w~i+1 - wi+1 =
h
1

360
1 k1 -

4275
128 k3 -

75240
2197 k4 +

50
1 k5 +

55
2 k6

If the error term falls below our required tolerance ε we return the four stage estimate

wi+1 = wi +
216
25 k1 +

2565
1408 k3 +

4104
2197 k4 -

5
1 k5

If the error r is too large, we replace the step size h with a smaller step size q h where

q = (ε/r)1/4

or a more conservative factor of

q = (2 r
ε)

1/4
= 0.84 (ε/r)1/4

and then redo the calculation. (Even if the first calculation is within the required tolerance, we can do better on the
next iteration by computing q anyway and using a step of size q h for the next iteration.)

3

