
The residual again

The residual is our method of judging how good a potential solution x~ of a system A x = b actually is. We
compute

r = b - A x~

which gives us a measure of how good or bad x~ is as a potential solution.

One obvious complication of this idea is that a small residual does not necessarily mean that we are making a
small mistake. A complicating factor is that in the original equation A x = b the vector b on the right hand side
establishes a natural scale for the problem. If ||b|| is large, we would expect solution vectors x to have similarly
large norms. Likewise, if ||b|| is small, we would expect x to have a correspondingly smaller norm. The same
reasoning applies to residuals. If ||b|| and ||x|| are both small, we would expect a typical residual r to have a small
norm as well. In that case, simply having an r with small norm may not be sufficient. What matters more is the
size of the norm ||r|| relative to the natural scale induced on the problem by ||b||. Likewise, what matters more to
us than the size of the actual error ||x - x~|| is the relative error

||x||
||x - x~||

The next natural question to ask is what is the relationship between

||b||
||r||

which we can measure, and

||x||
||x - x~||

which gives us a true measure of the size of the error? The following theorem gives an answer.

Theorem Suppose that x~ is an approximate solution of the system A x = b, A is non-singular, and r is the residual
vector associated with x~. Then, for any natural norm,

||x - x~|| ≤ ||r|| ||A-1||

and if x ≠ 0 and b ≠ 0,

||x||
||x - x~|| ≤ K(A)

||b||
||r||

where

K(A) = ||A|| ||A-1||

is the condition number associated with the matrix A.
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Proof From the definition of r we have

r = b - A x~ = A x - A x~

x - x~ = A-1 r

taking norms on both sides and using the definition of the matrix norm of A gives

(1)||x - x~|| = ||A-1 r|| ≤ ||A-1|| ||r||

We also have

b = A x

||b|| = ||A x|| ≤ ||A|| ||x||

(2)
||x||
1 ≤

||b||
||A||

Multiplying inequality (1) by (2) gives

||x - x~||
||x||
1 ≤ ||A-1|| ||r||

||b||
||A||

or

||x||
||x - x~|| ≤ ||A|| ||A-1||

||b||
||r||

Note In cases where the condition number K(A) is large, a small relative residual

||b||
||r||

can correspond to a large relative error

||x||
||x - x~||

thus making the residual less useful as a predictor of success.

Since the theorem is valid for any natural norm, in most applications it suffices to use the norm that makes it
easiest to compute the condition number K(A). The text points out that in the || ||∞ norm the matrix norm ||A||∞ is
easy to estimate:

||A||∞ = max1≤i≤n (ai,1 + ai,2 + ⋯ + ai,n )
Further insight

We can gain some further insight into what is going on here by using another important idea from linear algebra.
If the matrix A is a real-valued matrix with n distinct eigenvalues λ1, λ2, …, λn and associated eigenvectors v1, v2,
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…, vn then any vector v can be written as a combination of those eigenvectors:

v = c1 v1 + c2 v2 + ⋯ + cn vn

Expressing v as a combination of eigenvectors makes it easy to see what effect A will have on v:

A v = A(c1 v1 + c2 v2 + ⋯ + cn vn)
= c1 A v1 + c2 A v2 + ⋯ + cn A vn

= c1 λ1 v1 + c2 λ2 v2 + ⋯ + cn λn vn

Note that the eigenvectors are effectively rescaling the contributions from the various vectors vj. If λj is large in
absolute value for some j, the contribution due to the term cj vj grows in importance after multiplying by A.
Likewise, if λj is small in absolute value for some j, the contribution due to the term cj vj shrinks in importance
after multiplying by A.

Now consider what happens to the norm ||x - x~|| as we pass from ||x - x~|| to ||A x - A x~|| = ||r||. Suppose x - x~ just
happens to be strongly aligned with some eigenvector of A.

x - x~ = cj vj

r = A x - A x~ = A (cj vj)= cj λj vj

Taking norms gives us

||r|| = ||cj λj vj|| = λj ||cj vj|| = λj ||x - x~||

In the first scenario, the eigenvalue λj is large in absolute value. In that case, a large ||r|| corresponds to a small ||x -
x~||. In the second scenario, the eigenvalue λj is small in absolute value. In that case, a small ||r|| can corresponds to
a large ||x - x~||.

The bottom line here is that having one eigenvalue of A be small relative to the other eigenvalues of A can lead to
the bad scenario of a small residual matched with a large relative error. That is exactly what the condition number
K(A) captures. It turns out that the condition number K(A) is the ratio of the largest eigenvalue of A to the smallest
eigenvalue of A.

The above discussion also shows us that not all errors are equally bad. If we happen to have an error term x - x~

which is aligned with an eigenvector vj with a relatively large eigenvalue λj of A, then a small residual really does
correspond to a small error. On the other hand if the error term x - x~ is aligned with an eigenvector vj with a
relatively small eigenvalue λj of A, then a small residual can correspond to a large error.

The method of iterative refinement

Here is one final application of the residual. Suppose we have just solved the system
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A x = b

by Gauss elimination. Suppose we kept a record of the multipliers we used and can easily construct the L and U
matrices for A.

Gauss elimination is subject to round-off errors, so we should not believe that the solution we computed is the
exact solution of the system. Instead, we should treat it as an approximate solution x~ and apply our usual error
analysis. Next, we compute the residual:

r = b - A x~

The method of iterative refinement takes this as a starting point and attempts to improve on the solution x~ via the
following steps.

1. Use the L and U matrices to find an approximate solution y~ to the system

A y = r

2. Construct the vector

x~ + y~

3. Use the latter vector in place of the original x~ you computed.

Why is this an improvement? Look at what happens when you multiply x~ + y~ by A:

A (x~ + y~)= A x~ + A y~ ≈ A x~ + r = A x~ + b - A x~ = b

The middle relation is only an approximate inequality, because y~ is only an approximate solution to

A y = r
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