
The Laplace operator in polar coordinatesWe now consider the Laplace operator with Dirichlet boundary conditions on a circular region Ω = {(x,y) | x2 + y2≤ A }. Our goal is to compute eigenvalues and eigenfunctions of the Laplace operator on this region.-Δ u = λ uAs before, we seek a solution by the method of separation of variables. However, given the geometry of the regionit does not make sense to seek solutions of the formu(x,y) = u1(x) u2(y)Instead, we will change to polar coordinates and seek solutions of the formu(r,θ) = R(r) Θ(θ)Given the geometry of the problem at hand, this is a more natural coordinate system to use, and as we will see, theproblem does separate cleanly into ODEs in r and θ.Our first task it to rewrite the Laplace operator in polar coordinates. Initially we have thatΔu = ∂2u∂x2 + ∂2u∂y2To change coordinates from (x,y) to (r,θ) we have to introduce change of variable formulas and use the chain ruleto rewrite x and y derivatives as r and θ derivatives. Here are some of the details.r = x2 + y2tan(θ) = y/xTo start the process we develop some basic partial derivative facts.∂r∂x = x2 + y2x = rr cos(θ) = cos(θ)∂r∂y = x2 + y2y = rr sin(θ) = sin(θ)sec2(θ) ∂θ∂x = - x2y∂θ∂x = cos2(θ) (- r2 cos2(θ)r sin(θ) )= - rsin(θ)sec2(θ) ∂θ∂y = x11



∂θ∂y = cos2(θ) r cos(θ)1 = rcos(θ)We are now in position to start applying the chain rule:∂u∂x = ∂u∂r ∂r∂x + ∂u∂θ ∂θ∂x = ∂u∂r cos(θ) + ∂u∂θ (- rsin(θ))∂u∂y = ∂u∂r ∂r∂y + ∂u∂θ ∂θ∂y = ∂u∂r sin(θ) + ∂u∂θ ( rcos(θ))The higher order derivatives proceed similarly. I refer you to the text for further details. At the end of the processwe learn that ∂2u∂x2 + ∂2u∂y2 = ∂2u∂r2 + r21 ∂2u∂θ2 + r1 ∂u∂rSeparation of VariablesWe are now in position to implement the separation of variables. Once again, we want to compute eigenvalues andeigenfunctions of the Laplace operator: - Δ u = λ uTo apply separation of variables we assume that u(r,θ) = R(r) Θ(θ)and substitute into the polar form of the Laplace equation:- Δ u = - ∂2u∂r2 - r21 ∂2u∂θ2 - r1 ∂u∂r = - ∂2R(r) Θ(θ)∂r2 - r21 ∂2R(r) Θ(θ)∂θ2 - r1 ∂R(r) Θ(θ)∂rΘ(θ) d2R(r)dr2 - r21 R(r) d2Θ(θ)dθ2 - r1 Θ(θ) dR(r)dr = λ u = λ R(r) Θ(θ)Dividing both sides by a factor of R(r) Θ(θ) multiplying both sides by r2 givesR(r)r2 d2R(r)dr2 - Θ(θ)1 d2Θ(θ)dθ2 - R(r)r dR(r)dr = λ r2If we move all of the terms that depend on r and R(r) to one side and all of the terms that depend on θ and Θ(θ) tothe other we get - R(r)r2 d2R(r)dr2 + R(r)r dR(r)dr + λ r2 = - Θ(θ)1 d2Θ(θ)dθ2The only way for these two expressions to equal for all possible values of r and θ is to have them both equal aconstant, γ. 2



- Θ(θ)1 d2Θ(θ)dθ2 = γ- R(r)r2 d2R(r)dr2 + R(r)r dR(r)dr + λ r2 = γFor convenience, these two equations are typically rewritten asd2Θ(θ)dθ2 + γ Θ(θ) = 0d2R(r)dr2 + r1 dR(r)dr + (λ - r2γ )R(r) = 0The problem is now fully separated. The first of these two problems is the easier to work with. The appropriateboundary conditions to apply to this problem state that the function Θ(θ) and its first derivative with respect to θ areperiodic in θ: Θ(-π) = Θ(π)dΘdθ (-π) = dΘdθ (π)The ODE d2Θ(θ)dθ2 + γ Θ(θ) = 0Θ(-π) = Θ(π)dΘdθ (-π) = dΘdθ (π)has eigenvalues γ = 0 with associated eigenfunction Θ(θ) = 1and γ = n2 with associated eigenfunctions Θ(θ) = sin(n θ)Θ(θ) = cos(n θ)As a side effect of solving the Θ(θ) problem we have now determined all of the legal values of γ:γ = n2 for n = 0, 1, 2, …We can now focus our attention on the R(r) equation. 3



d2R(r)dr2 + r1 dR(r)dr + (λ - r2n2)R(r) = 0The standard technique for solving this equation starts by multiplying both sides of the equation by a factor of r2.r2 d2R(r)dr2 + r dR(r)dr + (λr2 - n2)R(r) = 0Next, and for reasons that will become clear below, we introduce a simple change of variables.s = λ rWith this change of variables we will rewrite the equation in terms of a functionS(s) = R(r) = R( λs )The equation uses various derivatives of R(r), so we will have to determine what happens to those derivatives oncewe make the change of variables. dR(r)dr = dR(r)ds dsdr = dS(s)ds λd2R(r)dr2 = d dR(r)drds dsdr = d2S(s)ds2 ( λ)2 = λ d2S(s)ds2We now have ( λs )2 λ d2S(s)ds2 + λs dS(s)ds λ + (s2 - n2) S(s) = 0s2 d2S(s)ds2 + s dS(s)ds + (s2 - n2) S(s) = 0This equation is a well-known ODE, the Bessel equation of order n.Solving the Bessel EquationThe Bessel equation can be solved by assuming that the solution takes the formS(s) = sα∑k = 0∞ ak skSubstituting this into the equation givess2∑k = 0∞ ak (k+α)(k+α-1)sk+α-2 + s∑k = 0∞ ak (k+α) sk+α-1 + s2∑k = 0∞ ak sk+α - n2∑k = 0∞ ak sk+α = 0To facilitate consolidating these sums into a single sum we shift the indices of summation in the third term.4



∑k = 0∞ ak (k+α)(k+α-1)sk+α +∑k = 0∞ ak (k+α) sk+α +∑k = 2∞ ak-2 sk+α - n2∑k = 0∞ ak sk+α = 0If we consider only terms with the form sα we see thata0 (α (α-1) + α - n2)= 0or α2 - n2 = 0This tells us that solutions must have the form S(s) = sn∑k = 0∞ ak skor S(s) = s-n∑k = 0∞ ak skThe latter form does not produce reasonable solutions, since for n ≥ 1 this function is unbounded at s = 0. Thus wewill continue with the assumpation that α = n. With this assumption we have that∑k = 0∞ ak (k+n)(k+n-1)sk+n +∑k = 0∞ ak (k+n) sk+n +∑k = 2∞ ak-2 sk+n - n2∑k = 0∞ ak sk+n = 0Considering terms with factors of sn+1 we see thata1 ((n+1)n + (n+1) - n2)= 0or a1 (2 n + 1) = 0or a1 = 0For terms beyond sn+2 we have ak ((k+n)(k+n-1) + (k+n) - n2)+ ak-2 = 0or ak ((k+n)2 - n2)+ ak-2 = 0This leads to a recurrence relation that allows us to compute the coefficients ak in terms of ak-2.5



ak = - (k+n)2 - n2ak-2 = - k (k + 2 n)ak-2Since a1 = 0, the recurrence relation tells us that ak = 0 for all odd k. For the even k we have thata2 = - 2 (2 + 2 n)a0a4 = - 4 (4 + 2 n)a2 = 2! 24(n+1)(n+2)a0a6 = - 6 (6 + 2 n)a4 = - 3! 26(n+3)(n+2)(n+1)a0More generally, for k = 2 j we have thata2j = (-1)j j! 22 j(n+1)(n+2)⋯(n+j)a0Since we are free to pick a0, we select for our conveniencea0 = 2n n!1so that a2j = 22j+nj! (n+j)!(-1)jThis now gives S(s) =∑j = 0∞ j!(n+j)!(-1)j (2s )2j+nThis function is known as the Bessel function of order n, usually written Jn(s).Eigenvalues and Eigenfunctions of the LaplacianFollowing the reasoning above we have that u(r,θ) = R(r) Θ(θ)where Θ(θ) = sin(n θ)or Θ(θ) = cos(n θ)6



and R(r) = S(s) = Jn(s)If we are going to require that u(A,θ) = 0 we must have thatR(A) = S( λ A) = Jn( λ A) = 0or that λ A must be a zero of Jn(s). It turns out that for each value of n ≥ 0 the Bessel function Jn(s) has an infinitesequence sn,m of zeroes. Corresponding to each of these zeroes is an eigenvalue of the Laplacian:λn,m A = sn,mλn,m = A2(sn,m)2Corresponding to each of these eigenvalues are two eigenfunctionsφ(1)n,m(r,θ) = Jn( Asn,m r)cos(n θ)φ(2)n,m(r,θ) = Jn( Asn,m r)sin(n θ)In the n = 0 case we have instead φ0,m(r,θ) = J0( As0,m r)Orthogonality Properties of the EigenfunctionsSince the operator -Δ is a symmetric operator, eigenfunctions corresponding to distinct eigenvalues will have to beorthogonal. It is also possible to show that the eigenfunctions with the same eigenvalues are also orthogonal.(φ(1)n,m(r,θ) , φ(2)n,m(r,θ))= 0Solving PDEs on the diskWe are now in a position to solve PDEs containing the Laplace operator on the disk. Consider for example thePoisson equation with Dirichlet boundary conditions on the disk.-Δ u = f(r,θ)Using the method of eigenfunction expansions, we start by assuming thatu(r,θ) = ∑m = 1∞ a0,m φ0,m(r,θ) +∑n = 1∞ ∑m = 1∞ (an,m φ(1)n,m(r,θ) + bn,m φ(2)n,m(r,θ))Since φ(1)n,m(r,θ) and φ(2)n,m(r,θ) are both eigenfunctions of the negative Laplacian with eigenvalues of λn,m we7



have that -Δ u = ∑m = 1∞ a0,m λ0,mφ0,m(r,θ) +∑n = 1∞ ∑m = 1∞ λn,m(an,m φ(1)n,m(r,θ) + bn,m φ(2)n,m(r,θ))To solve for the coefficients an,m and bn,m we need to construct the eigenfunction expansion for the forcing functionf(r,θ) = ∑m = 1∞ c0,m φ0,m(r,θ) +∑n = 1∞ ∑m = 1∞ (cn,m φ(1)n,m(r,θ) + dn,m φ(2)n,m(r,θ))The coefficients cn,m and dn,m are computed in the usual way via the orthogonality properties of the eigenfunctions.c0,m = (φ0,m(r,θ) , φ0,m(r,θ))(f ,φ0,m(r,θ) )cn,m = (φ(1)n,m(r,θ) , φ(1)n,m(r,θ))(f ,φ(1)n,m(r,θ) )dn,m = (φ(2)n,m(r,θ) , φ(2)n,m(r,θ))(f ,φ(2)n,m(r,θ) )Once we have computed these coefficients we can solve for the coefficients an,m and bn,m.a0,m = λ0,mc0,m = (s0,m)2A2 c0,man,m = λn,mcn,m = (sn,m)2A2 cn,mbn,m = λn,mdn,m = (sn,m)2A2 dn,m
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