The Laplace operator in polar coordinates

We now consider the Laplace operator with Dirichlet boundary conditions on a circular region Q = {(x,y) | x> + y?

< A }. Our goal is to compute eigenvalues and eigenfunctions of the Laplace operator on this region.
Au=lu

As before, we seek a solution by the method of separation of variables. However, given the geometry of the region

it does not make sense to seek solutions of the form
u(x,y) = uy(x) uy(y)
Instead, we will change to polar coordinates and seek solutions of the form
u(r,0) = R(r) ©(0)

Given the geometry of the problem at hand, this is a more natural coordinate system to use, and as we will see, the

problem does separate cleanly into ODEs in r and 6.
Our first task it to rewrite the Laplace operator in polar coordinates. Initially we have that

Au=0u + 0u
x> ay

To change coordinates from (x,y) to (r,0) we have to introduce change of variable formulas and use the chain rule
to rewrite x and y derivatives as r and @ derivatives. Here are some of the details.

r=-x2+y2
tan(@) = y/x

To start the process we develop some basic partial derivative facts.

or = X _rcos(d) _ cos(0)
ox x2 + y2 r
or=__y  _rsin®) _ o)
ay X2 + y2 r
sec(0) 00 = - Y.
ox 52
00 = cos2(0) [ - _1Sin@) | = _sin(0)
ox 72 cos’(6) r
sec2(9) 00 =1
dy X



90 = cos2(6) 1 _cos(9)
dy r cos(6) r

We are now in position to start applying the chain rule:

a_MZa_MQ'FQ%:a_MCOS(G)_'_Q(Sln(e))
x drdx 00 dx or 00 r
y orady 0d0dy or 90 \ 7

The higher order derivatives proceed similarly. I refer you to the text for further details. At the end of the process
we learn that

ox~  dy or ™ 00
Separation of Variables

We are now in position to implement the separation of variables. Once again, we want to compute eigenvalues and

eigenfunctions of the Laplace operator:
-Au=Au
To apply separation of variables we assume that
u(r,0) = R(r) ©(6)

and substitute into the polar form of the Laplace equation:

Au=-0%-1 9% _19u=_0R@)O® _ 1 9°R() O®) _1 IR(r) O©)
ot 1?9t T Or or r? 00 r or
0©0) R0 - 1 p(r) 4°00) -1 g(9) 4R = 4 4 = 1 R(r) ©©O)
a7 7~ d02 r dr

Dividing both sides by a factor of R(r) ®(0) multiplying both sides by 72 gives

2 d’R() . _1 d’0©) . _r dR() =2

R 42 OO 4 R dr

If we move all of the terms that depend on r and R(r) to one side and all of the terms that depend on € and ®(0) to
the other we get

2 dR0) 4 _r dR() 45,2 =._1 d’00)

R(r) 4,2 % dr 0) d92

The only way for these two expressions to equal for all possible values of » and @ is to have them both equal a

constant, .



1 d’e0)

- =Y
CI()] dt92

2 RO 4 _r dRD) 442y
R(r) 4,2 R(r) dr
For convenience, these two equations are typically rewritten as

d2®(2‘9) +7600)=0
do

d°R(") 4 1dR() 4 (,1- l) R) =0
dr rodr r?

The problem is now fully separated. The first of these two problems is the easier to work with. The appropriate
boundary conditions to apply to this problem state that the function @(¢) and its first derivative with respect to € are

periodic in 0:
O(-r) = O(x)
dO(-7) = dO(x
i 9( ) i 9( )
The ODE

2
&(f)w@(e):o
do

O(-r) = O(x)

%(-ﬂ) = %(ﬂ)

has eigenvalues y = 0 with associated eigenfunction
00O) =1

and y = n? with associated eigenfunctions

0(0) = sin(n 0)

®(0) = cos(n 0)
As a side effect of solving the ®(0) problem we have now determined all of the legal values of y:

y=n’>forn=0,1,2, ...

We can now focus our attention on the R(r) equation.



d°R() 4 1dRW) 4 (-7 \R() =0
dl"2 r dr 72

The standard technique for solving this equation starts by multiplying both sides of the equation by a factor of r2.

2 PR 4 dRO) 4 (1 - 02) R = 0
a7 dr

Next, and for reasons that will become clear below, we introduce a simple change of variables.
s=1r

With this change of variables we will rewrite the equation in terms of a function
S(s) =R(r) = R(-%-)
1

The equation uses various derivatives of R(r), so we will have to determine what happens to those derivatives once
we make the change of variables.

dR(r) = dR(r) ds = dS(s) ﬂ
dr ds dr ds

RO = dr_ ds = 4°56) (J7) = 2 45()
dr2 ds dr ds2 ds2

We now have

(5?2 d°86) 4 s dSO) 7 4 (s2- n2) S(s) = 0

«/Z ds2 «/Z ds

2 d2S(s) 4 ¢ dS(s) 4 (s*-n?) S(s)=0
ds’ ds

This equation is a well-known ODE, the Bessel equation of order n.
Solving the Bessel Equation

The Bessel equation can be solved by assuming that the solution takes the form
S(s) = s* Zak sk
k=0
Substituting this into the equation gives

52 Zak (k4a)(k+a-1)sk+a2 4 ¢ Zak (k+a) sktel 4 g2 Zak skta _p2 Zak skta =

k=0 k=0 k=0 k=0

To facilitate consolidating these sums into a single sum we shift the indices of summation in the third term.



[oo]

Zak (k+a)(k+a-1)sk+2 + Zak (k+a) skra + Zam shta _p2 Zak skra =0
k=0 k=0 k=2

k=0

If we consider only terms with the form s* we see that
ag (@ (@-1) +a- nz) =0

or

This tells us that solutions must have the form

S(s)=s" Zak sk

k=0

or

S(s) =s" Zak sk
k=0

The latter form does not produce reasonable solutions, since for n > 1 this function is unbounded at s = 0. Thus we
will continue with the assumpation that & = n. With this assumption we have that

Zak (k+n)(k+n-1)skm + Zak (k+n) sk + Zak-z sktn - p? Zak skt =

k=0 k=0 k=2 k=0

Considering terms with factors of s"*! we see that
a; ((n+1)n + (n+1) - n2) =0
or
a;2n+1)=0
or
a; =0
For terms beyond s"*2 we have
ay ((k+n)(k+n-1) + (k+n) - n2) + a;, = 0
or
a, ((k+n)" - n2) + ay, = 0

This leads to a recurrence relation that allows us to compute the coefficients a;, in terms of a; _,.



) = )
(k+n)2—n2 k(k+2n)

Clk=-

Since a; = 0, the recurrence relation tells us that a;, = 0 for all odd k. For the even k we have that

9

Ay =- — "9
22 +2n)

a )

a, = - =
4G4 +2n) 2 2 (ne2)

ay ay

Cl6 = - =-
6(6+2n) 31251 43)n+2)(n+1)

More generally, for k = 2 j we have that

ay = (1) = 20
7127 (4 D(n+2)-+(n+))

Since we are free to pick a,, we select for our convenience

_ 1
ag =
2” n'
so that
j
ay = D)
271 ()

This now gives

[oo]

Yy s
= _;;)j!(nﬂ')!(;)

2j+n

This function is known as the Bessel function of order n, usually written J,(s).
Eigenvalues and Eigenfunctions of the Laplacian
Following the reasoning above we have that
u(r,0) = R(r) ©(0)
where
O(@) = sin(n 6)
or

B(0) = cos(n 0)



and
R(r) = S(s) = J,,(s)
If we are going to require that u(A,0) = 0 we must have that
RA) =S 2 4)=J,/2 4)=0

or that '\/Z A must be a zero of J,,(s). It turns out that for each value of n > 0 the Bessel function J,,(s) has an infinite

sequence s, , of zeroes. Corresponding to each of these zeroes is an eigenvalue of the Laplacian:

An,m A= Snm

2
S
/In,m — ( n,m)

A2

Corresponding to each of these eigenvalues are two eigenfunctions

(p(l)n,m(r,a) =Ju <Sn_,m 1’>COS(n )
A

¢(2)n,n1(ra0) =Jn Sn.m r )sin(n 6)
A
In the n = 0 case we have instead

N
(pO,m(r’a) = JO (Z_’m I">

Orthogonality Properties of the Eigenfunctions

Since the operator -A is a symmetric operator, eigenfunctions corresponding to distinct eigenvalues will have to be

orthogonal. It is also possible to show that the eigenfunctions with the same eigenvalues are also orthogonal.
(@ Prn(r.0) » 9P n(r.0)) = 0
Solving PDEs on the disk

We are now in a position to solve PDEs containing the Laplace operator on the disk. Consider for example the

Poisson equation with Dirichlet boundary conditions on the disk.
-Au=fr6)

Using the method of eigenfunction expansions, we start by assuming that

u(r,¢9) = Zao,m ¢0,m(r’9) + Z Z (an,m (ﬂ(l)n,m(”ﬁ) + bn,m (ﬂ(z)n,m(”ﬁ))

m=1 n=1Ilm=1

Since @, ,(r,0) and @, ,(r,0) are both eigenfunctions of the negative Laplacian with eigenvalues of 4, we

7



have that

-Au= zao,m ﬂo,m(ﬂo,m(’”ﬁ) + z Zﬂn,m (an,m (P(l)n,m(’”ﬁ) + bn,m (P(Z)n,m(’”ﬁ))
m=1 n=1lm=1
To solve for the coefficients a, ,, and b,, ,, we need to construct the eigenfunction expansion for the forcing function
f.0) = D com om0 + 20 D (Com @Vnanr.0) + dun 90u(r.0))

m=1 n=1lm=1

The coefficients ¢, ,, and d,, ,, are computed in the usual way via the orthogonality properties of the eigenfunctions.

Com = (f ’(/)O,m(r’a) )
m
((pO,m(r’a) » (pO,m(rae))
- (£ .0V m(.0) )
(@Vnm(.0) s @V (r.0))
dy = (f ,(o(z)n,m(r,é) )

(@@ m(1,0) , Py (1,0))

Once we have computed these coefficients we can solve for the coefficients a,, ,, and b,, ;.

2
CO,m =A CO,m

aO,m = ) )
0,m (SO,m)
2
a — Cnm — A Cn,m
n,m 5
Anm (Sn,m)
2
b — dn,m — A dn,m
nm = = 5
n,m (Sn,m)



