Pointwise convergence of complex Fourier series

Let A{x) be a periodic function with period 2 /defined on the interval [-/Z/]. The complex Fourier coefficients of £

X) are
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This leads to a Fourier series representation for £ x)
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We have two important questions to pose here.
1. For a given x, does the infinite series converge?
2. If it converges, does it necessarily converge to f{x)?

We can begin to address both of these issues by introducing the partial Fourier series
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In terms of this function, our two questions become

1. For a given x, does lim fj(x) exist?
N-oo
2. If it does, is lim £(x) = {x)?
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The Dirichlet kernel

To begin to address the questions we posed about j(x) we will start by rewriting 75(x). Initially, £(x) is defined
by
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If we substitute the expression for the Fourier coefficients
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into the expression for £;(x) we obtain
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The expression in parentheses leads us to make the following definition. The Dirichlet kernel is the function
defined as
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In terms of the Dirichlet kernel, we can write the expression for #(x) as
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Some properties of the Dirichlet kernel

By rewriting the expression for the Dirichlet kernel, we can recogize that the Dirichlet kernel is actually a
geometric series.
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Because this is a geometric series, it can be summed explicitly.
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Some explicit integrations show that
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Convolutions

The integral we saw earlier
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is an example of what is known as a convolution integral. Specifically, if g(x) and /A(x) are two periodic functions

with period 2 /defined on [-//] the convolution of g and h is defined by
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Here is an important property of convolution integrals. From the definition we have that
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If we introduce a change of variables z= x - sin the integral, the integral becomes
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Since both g and /4 are assumed to be periodic with the same period, if we shift the range of integration by a

factor of x, the integral has the same value.
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Replacing the variable z with s in the final integral gives
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This is an important symmetry property of the convolution of periodic functions.

For our present purposes, because both the Dirichlet kernel Kj(x) and our function f{x) are periodic, we have
that
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This latter form is a more convenient form to work with.

The pointwise convergence theorem

A function f(x) is said to be piecewise smooth on an interval [-//] if the function has at most a finite number of
isolated discontinuities in that interval, and at each point where the function is discontinuous it has a finite limit

on either side of the discontinuity. That is,
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both exist and are finite.



We are now in a position to state
Pointwise convergence theorem for complex Fourier series

If Ax) is a piecewise smooth periodic function defined on the interval [-//] then
lim f\(x) = fix
lim f(0 = £
whereever f{x) is continuous. At points where f{x) has a jump discontinuity,
lim £y(x) = L (Ax) + flx+
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Proof We will show a somewhat stronger pair of results.
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both proofs are similar, so we will only show the proof of the second equality.

To start with, we will use a fact about the Dirichlet kernel I mentioned above.
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Using this gives us
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Thus, to show that
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we can instead prove the equivalent
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Substituting this into the integral gives



sin <(2N+1) s
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Next, we introduce
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To proceed beyond this point we are now going to need a pair of lemmas.

Lemma 1
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Even if x is a point of discontinuity, if we assume that £is piecewise smooth, then
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exists and is finite. Thus,

lim F{,(s) = - d£(x)
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Lemma 2 (Bessel's Inequality)

If {@a(5)} is a sequence of orthogonal functions defined on [0,/] then for all Vand all functions /(s) we have
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Here
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is any inner product for our function space. In practice, this is usually the standard complex inner product
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We now use these two lemmas to continue with the proof of our main result. We need to prove that
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To prove this, we apply Bessel's inequality with /{s) = F{,,(s) and @p(s) = sin ((2N+1) rs/2 ]). The first thing to

note here is that the sequence of functions
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is in fact a sequence of orthogonal functions defined on the interval [0,/].

Now consider the inner product
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The only thing that could keep this integral from being finite is a singularity at s = 0. By lemma 1 above,
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so there is no such singularity. Thus, the right hand side in the inequality
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must be finite, and hence the sum on the left must converge.

For that sum to converge, a necessary condition is that
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means that we must have
lim (F(,(s) , M) =0
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This translates into the condition that
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and the result is proved.



