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The Vector Norm

Definition Let V be a vector space. A norm on V is a real-valued function ||Ý||:Vœ‰ that satisfies
the following properties.

||v|| ³ 0 for all v ý V and ||v|| = 0 if and only if v = 0.1.

||¨ v|| = |¨| ||v|| for all scalars ¨ and all vectors v ý V.2.

||u + v|| º ||u|| + ||v|| for all u, v ý V.3.

A vector v is said to be a normal vector if ||v|| = 1.

The Inner Product

Definition Let V be a real vector space. A (real) inner product on V is a function (Ý,Ý) that maps
pairs of vectors from V to real numbers that satisfies the following properties.

(u,v) = (v,u) for all vectors u and v in V.1.

(¨ u+‡ v,w) = ¨(u,w) + ‡(v,w) and (w,¨u+‡v) = ¨(w,u) + ‡(w,v) for all vectors
u, v, and w in V and all real numbers ¨ and ‡.

2.

(u,u) ³ 0 for all vectors u ý V and (u,u) = 0 if and only if u = 0.3.

Definition Two vectors u and v in a vector space are said to be orthogonal with respect to an inner
product if (u,v) = 0.

Examples

The standard inner product on ‰
n

is the vector dot product.

(u,v) = ¾
i = 1

n

ui vi

The standard norm on ‰
n

is

||u|| = (u,u)

The vector space C[0,1] of continuous functions on the interval [0,1] has an inner product

(f,g) = ½1
0
f(x) g(x) d x

This inner product is known as the L2 inner product. Likewise, we can define an L2 norm for this
vector space by

||f || = ½1
0
(f(x))

2
dx
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Other possible norms include the L1 norm

||f || = ½1
0
f(x) d x

and the L
²

norm

|| f || = maxxý[0,1] |f(x)|

Orthogonal Bases

Definition A basis v1, v2, …, vn for a vector space V is an orthonormal basis if (vi ,vj) = 0 for all i ¹
j and (vi ,vi) = 1 for all i.

Observation If a vector space has an orthonormal basis, computing coordinate representations with
respect to that basis is very easy. Given an arbitrary vector v in V, we seek to compute a coordinate

vector c =

c1
c2
Ú
cn

such that

c1 v1 + c2 v2 + Ù + cn vn = v

If the basis is orthonormal, we can easily compute the coordinates ci by taking the inner product
with respect to vi on both sides of the equation:

(c1 v1 + c2 v2 + Ù + cn vn , vi) = (v,vi)

c1 (v1,vi) + c2 (v2,vi) + Ù + cn (vn,vi) = (v,vi)

c1 0 + c2 0 + Ù + ci 1 + Ù + cn 0 = (v,vi)

ci = (v,vi)

Constructing an Orthonormal Basis

The Gram-Schmidt algorithm is an algorithm that can convert a basis for a vector space into an
alternative basis that is orthonormal. Here is an outline of that algorithm. Let v1, v2, …, vn be a
basis for a vector space V.

1. Convert the vector v1 into a normal vector by dividing it by its own norm.

u1 = 1
v1

v1

2. Construct

p2 = v2 - (u1 , v2) u1
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The term (u1 , v2) u1 is the projection of v2 onto u1. By construction, p2 is orthogonal to v1 (why?).

3. We then form

u2 = 1
p2

p2

in order to make u2 be both normal and orthogonal to u1.

4. Next, compute

p3 = v3 - (u1 , v3) u1 - (u2 , v3) u2

and subsequently

u3 = 1
p3

p3

to produce a vector that is normal and perpendicular to both u1 and u2.

5. The process repeats until all of the original vi vectors have been processed. The result is a set of ui
vectors which form an orthonormal basis for V.

The Projection Theorem

Here is a theorem from the text which also makes use of the concept of a projection.

Projection Theorem Let V be a vector space with an inner product. Let W be a finite dimensional
subspace of V and let v by an arbitrary vector in V.

1. There is a unique u in W such that

||v - u|| = minwýW||v - w||

u is known as the projection of v onto the subspace W.

2. (v-u,z) = 0 for all z ýW.

3. If {w1, w2, …, wn} is a basis for W then

u = ¾
i = 1

n

xi wi

where

G x = b

Gi,j = (wi , wj)

bi = (wi , v)

The matrix G is known as the Gram matrix and the equations G x = b are known as the normal
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G G = normal
equations.

4. If {w1, w2, …, wn} is an orthogonal basis for W then

u = ¾
i = 1

n (wi , v)

(wi , wi)
wi

Observation A very important thing to note about the projection theorem is that the original vector
space V does not have to be a finite dimensional space. The only requirement in the theorem is that
W must be a finite dimensional subspace of V.

This opens an intriguing possibility. Suppose we have a linear operator f that maps V to V. If we
want to make a finite representation for f we might do the following:

For a v ý V we compute the projection u of v onto W.1.

We compute f(u) and hope that f(u) stays in W. If it does not, we project f(u) back
onto the subspace W to make a vector y.

2.

What we have constructed is a restriction of the operator f onto the subspace W. If f
is still linear on W, we can construct a finite representation for the restricted
operator and eventually represent that as a matrix A such that

3.

A u = y


