The Vector Norm

Definition Let V be a vector space. A norm on V is a real-valued function || - ||: V=R that satisfies
the following properties.

1. ]|v|| > 0 for all v.€ Vand ||v|| =0 if and only if v = 0.
2. || v|| = |a] ||v|| for all scalars o and all vectors v € V.

3. [Jlu+ v|| < |ul|| + ||v]| for allu, v e V.
A vector v is said to be a normal vector if ||v|| = 1.
The Inner Product

Definition Let V be a real vector space. A (real) inner product on V is a function ( -,-) that maps
pairs of vectors from V to real numbers that satisfies the following properties.

1. (u,v) = (v,u) for all vectors u and v in V.

2. (¢ u+pv,w) = a(u,w) + f(v,w) and (w,au+0v) = a(w,u) + [(w,v) for all vectors
u, v, and w in V and all real numbers « and (3.

3. (u,u) > 0 for all vectors u € V and (u,u) = 0 if and only if u = 0.

Definition Two vectors u and v in a vector space are said to be orthogonal with respect to an inner
product if (u,v) = 0.

Examples

The standard inner product on R" is the vector dot product.
n
(wyv) = .Zluz' Vi
1=
The standard norm on R" is
[[uf| = /()

The vector space C[0,1] of continuous functions on the interval [0,1] has an inner product

(f9) = [, f(a) gla) de

This inner product is known as the L? inner product. Likewise, we can define an L norm for this

171 =~ ) (f(2))* da

vector space by



Other possible norms include the L' norm

1
111 = J, | f(z)| de
and the L™ norm

| 1] = maz,epo1y [A2)]
Orthogonal Bases

Definition A basis vy, vy, ..., v, for a vector space V is an orthonormal basis if (v; ,v;) = 0 for all 7
jand (v;,v;) = 1 for all i.

Observation If a vector space has an orthonormal basis, computing coordinate representations with
respect to that basis is very easy. Given an arbitrary vector v in V|, we seek to compute a coordinate
€1

vector ¢ = | ©2| such that
Cn
C1Vi+ v+ -+ cCcpvp=1V

If the basis is orthonormal, we can easily compute the coordinates ¢; by taking the inner product
with respect to v; on both sides of the equation:

(c1Vvi+ e va+ =+ cn Vi, 1) = (V,V))
1 (Vvi,vi) + ¢ (v, vy) + -+ en (Va,v) = (V,Vy)
10+ 0+ +¢l+ -+ ¢ 0=(v,vy
¢; = (v,v;)
Constructing an Orthonormal Basis

The Gram-Schmidt algorithm is an algorithm that can convert a basis for a vector space into an
alternative basis that is orthonormal. Here is an outline of that algorithm. Let vy, vy, ..., v, be a
basis for a vector space V.

1. Convert the vector v; into a normal vector by dividing it by its own norm.

u = 1 A4
vyl

2. Construct

P2 = Vo - (111 ) V2) u



The term (u; , vo) u; is the projection of vy onto u;. By construction, ps is orthogonal to v (why?).
3. We then form

_ 1
HP2H

Uy P2

in order to make uy be both normal and orthogonal to u;.

4. Next, compute
P3="v3- (u, v3) u - (uz, v3) up

and subsequently

uz = 1 P3
HP3H

to produce a vector that is normal and perpendicular to both u; and us,.

5. The process repeats until all of the original v; vectors have been processed. The result is a set of u;
vectors which form an orthonormal basis for V.

The Projection Theorem

Here is a theorem from the text which also makes use of the concept of a projection.

Projection Theorem Let V be a vector space with an inner product. Let W be a finite dimensional
subspace of V and let v by an arbitrary vector in V.

1. There is a unique u in W such that

v - uf| = mingeyllv - wl|
u is known as the projection of v onto the subspace W.
2. (v-u,z) =0 forallz e W.

3. If {wy, Wy, ..., Wy} is a basis for W then

n
u = lzlfﬁi w;

i =

where
Gx=Db
Gi;=(w;, w;)
b; = (w;,v)

The matrix G is known as the Gram matriz and the equations G x = b are known as the normal



equations.
4. If {wy, wo, ..., Wy} is an orthogonal basis for W then
o (wy, v
U= ZE (wi, v) w;

:1(wi7 'LUZ)

Observation A very important thing to note about the projection theorem is that the original vector
space V does not have to be a finite dimensional space. The only requirement in the theorem is that
W must be a finite dimensional subspace of V.

This opens an intriguing possibility. Suppose we have a linear operator f that maps V to V. If we
want to make a finite representation for f we might do the following:

1. For a v € V we compute the projection u of v onto W.

2. We compute f(u) and hope that f(u) stays in W. If it does not, we project f(u) back
onto the subspace W to make a vector y.

3. What we have constructed is a restriction of the operator f onto the subspace W. If f
is still linear on W, we can construct a finite representation for the restricted
operator and eventually represent that as a matrix A such that

Au=y



