Solving the Heat Equation by the Finite Element Method
Consider the heat equation with Dirichlet boundary conditions
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u0,t) =u(l,t)=0

u(x,0) = w(x)

To apply the Galerkin method to this equation we start by multiplying both sides of the PDE by test functions v(x)
from C D2[0,l] and integrating to make a weak form of the PDE.
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As usual, we apply integration by parts one time to convert the form of the second term on the left:

! !
_x 0%u dx=- (6u >|l+ ou dv d
KO u\v(x)dx =-x (0u v(x kK [ Oudvdx
/0( 6x2>() 6x()0 /Oaxax

Since v(x) vanishes at the boundary we have
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This is the weak form of the heat equation. As before, we will select N functions ¢,(x) that form a basis for a

subspace Vy of C D2[0,l]. This time around we have to assume that the approximate solution u/(x,f) takes the form
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Since the solution depends on both x and t we have to assume that the coefficients of this combination are functions
of t.

Substituting this approximate solution with test function v(x) = ¢,(x) into the weak form gives
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If we introduce mass matrix M whose i,j entry is
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a stiffness matrix K whose i,j entry is
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a vector f(#) whose j entry is
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and a vector a(f) whose j entry is ;(f) we can write the equation above as a system of ODEs for the vector a(7) of

unknown coefficients a;():
M () = -K a(t) + £(?)

This system of equations has an initial condition given by the requirement that
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The accompanying Mathematica notebook will demonstate several different methods that can be used to solve this
system of ODEs.



