
SolvingSolvingSolvingSolving thethethethe WaveWaveWaveWave EquationEquationEquationEquation bybybyby thethethethe FiniteFiniteFiniteFinite ElementElementElementElement MethodMethodMethodMethod

Consider the wave equation with Dirichlet boundary conditions

∂2u
∂t2

- c2 ∂2u
∂x2

= f(x,t)

u(0,t) = u(l,t) = 0

u(x,0) = ψ(x)

∂u
∂t
(x,0) = γ(x)

To apply the Galerkin method to this equation we start by multiplying both sides of the PDE by test functions v(x
) from CD

2[0,l] and integrating to make a weak form of the PDE.

∫
l

0 (∂
2u
∂t2

- c2 ∂2u
∂x2)

v(x) d x = ∫
l

0
f(x,t) v(x) d x

As usual, we apply integration by parts one time to convert the form of the second term on the left:

∫
l

0 (-c
2 ∂2u
∂x2)

v(x) d x = - c2 (∂u∂x v(x))|0
l + c2 ∫

l

0
∂u
∂x

∂v
∂x
d x

Since v(x) vanishes at the boundary we have

∫
l

0
∂2u
∂t2

v(x) + c2 ∂u
∂x
∂v
∂x
d x = ∫

l

0
f(x,t) v(x) d x

This is the weak form of the wave equation. As before, we will select N functions φi(x) that form a basis for a

subspace VN of CD
2[0,l]. This time around we have to assume that the approximate solution uN(x,t) takes the

form

uN(x,t) =∑
j = 1

N

αj(t) φj(x)

Since the solution depends on both x and t we have to assume that the coefficients of this combination are
functions of t.

Substituting this approximate solution with test function v(x) = φi(x) into the weak form gives

∫
l

0
∑
j = 1

N

αj″(t) φj(x) φi(x) + c2∑
j = 1

N

αj(t)
dφj(x)
dx

dφi(x)
dx

d x = ∫
l

0
f(x,t) φi(x) d x

If we introduce mass matrix M whose i,j entry is

Mi,j = ∫
l

0
φj(x) φi(x) d x

1



a stiffness matrix K whose i,j entry is

Ki,j = ∫
l

0
c2 dφj(x)

dx
dφi(x)
dx

d x

a vector ffff(t) whose j entry is

ffffj(t) = ∫
l

0
f(x,t) φj(x) d x

and a vector α(t) whose j entry is αj(t) we can write the equation above as a system of ODEs for the vector α(t) of
unknown coefficients αj(t):

M α″(t) + K α(t) = ffff(t)

This system of equations is second order in t, so we will require two initial conditions. One initial condition is
given by the requirement that

uN(x,0) =∑
j = 1

N

αj(0) φj(x) ≈∑
j = 1

N

ψ(xj) φj(x)

The second initial condition comes from

∂uN
∂t
(x,0) =∑

j = 1

N

αj′(0) φj(x) ≈∑
j = 1

N

γ(xj) φj(x)

The system above can be solved exactly in some cases. The Mathematica notebook that accompanies this lecture

shows a couple of examples of using DSolve to solve systems like this.

An alternative technique is to use a numerical solution method. The next section will discuss how to apply

standard numerical solutions techniques to this problem.

NumericalNumericalNumericalNumerical solutionsolutionsolutionsolution ofofofof secondsecondsecondsecond orderorderorderorder systemssystemssystemssystems

Consider a typical first-order system of equations. In standard form we can write this system

yyyy′(t) = ffff(t,yyyy(t))

yyyy(0) = yyyy0

All of the numerical solution methods we studied previously generalize in a straightforward way to systems. In

particular, the standard Runge-Kutta method of order four

kkkk1 = ffff(tk,yyyyk)

kkkk2 = ffff(tk + h/2,yyyyk + h/2 kkkk1)

kkkk3 = ffff(tk + h/2,yyyyk + h/2 kkkk2)

2



kkkk4 = ffff(tk + h,yyyyk + h kkkk3)

yyyyk+1 = yyyyk +
3
h(kkkk1 + 2 kkkk2 + 2 kkkk3 + kkkk4)

carries over to systems quite readily.

A second order differential equation takes the form

y″(t) = f(t,y(t),y′(t))

y(t0) = α

y′(t0) = β

This equation can be converted to a system of two first order equations by introducing functions u1(t) = y(t) and
u2(t) = y′(t). This converts the equation above into a system of equations

yyyy′(t) = u2(t)
u1(t)

′
= f(t,u1(t),u2(t))

u2(t)
= ffff(t,yyyy(t))

yyyy(t0) = β
α

which can then be solved by any of our standard methods. The only complication is doing the necessary

bookkeeping to construct the functions and vectors.

Let us now turn these methods to the problem at hand in section 7.3.

M αααα″(t) + K αααα(t) = gggg(t)

αj(0) = ψ(xj)

αj′(0) = γ(xj)

(Here I have renamed the forcing function from ffff(t) to gggg(t) to prevent confusion with the function ffff(t,yyyy(t)) I used
above.) The first step is to put the system in standard form.

αααα″(t) = -M-1 K αααα(t) +M-1 gggg(t)

αααα(0) = ψψψψ

αααα′(0) = γγγγ

The next step is to apply the trick from above to convert the second order system to a first order system. We

introduce vectors

3



yyyy′(t) = αααα′(t)
αααα(t)

′
= -M-1 K αααα(t) +M-1 gggg(t)

αααα′(t)
= ffff(t,yyyy(t))

yyyy(t0) =
γγγγ
ψψψψ

The only special trick needed to handle this converted system is making the expression for ffff(t,yyyy(t)) look more
like a matrix-vector equation. We can do this by introducing a matrix

A = 0
I
-M-1 K
0

and a vector

vvvv(t) = M-1 gggg(t)
0

The matrix A is a block-structure matrix made up of other matrices. The termM-1 K is the original n by n matrix
that appeared in the second order system, and the identity matrix I is an n by n identity matrix. This produces a (2
n) by (2 n) matrix A. Likewise, the vector vvvv(t) is the result of stacking the original n component vector M-1 gggg(t)
on top of a vector of n zeroes.

We have now rewritten our second order system into a larger first order system.

yyyy′(t) = A yyyy(t) + vvvv(t) = ffff(t,yyyy(t))

yyyy(t0) =
γγγγ
ψψψψ

We can now use, say, the Runge-Kutta formulas

kkkk1 = ffff(tk,yyyyk)

kkkk2 = ffff(tk + h/2,yyyyk + h/2 kkkk1)

kkkk3 = ffff(tk + h/2,yyyyk + h/2 kkkk2)

kkkk4 = ffff(tk + h,yyyyk + h kkkk3)

yyyyk+1 = yyyyk +
3
h(kkkk1 + 2 kkkk2 + 2 kkkk3 + kkkk4)

In the sequence of vectors yyyyk that we generate the bottom n components will be the values of ααααk that we wanted
to compute. The accompanying Mathematica notebook will show a couple of examples of this in practice.

4


