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Estimating Derivatives

In the accompanying Mathematica notebook I showed a general technique that can be used to

estimate various derivatives of a function f(x) at a point x = x0 by using nearby function values. We

developed two key formulas. These centered difference formulas use nearby values of f(x) to

estimate f
·
(x0) and f

ò
(x0):

f
·
(x0) ¦ f(x0 + h) - f(x0 + h)

2 h

f
ò
(x0) ¦ f(x0 - h) - 2 f(x0) + f(x0 + h)

h2

These approximation formulas can also be applied to partial derivatives. If g(x,t) is a function of two

variables, we can approximate both its t partial derivatives and its x partial derivatives by similar

formulas:

Ûg
Ût

(x0,t0) ¦ g(x0,t0+k) - g(x0,t0-k)
2 k

Û
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(x0,t0) ¦ g(x0,t0-k) - 2 g(x0,t0) + g(x0,t0+k)

k2

Ûg
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(x0,t0) ¦ g(x0+h,t0) - g(x0-h,t0)
2 h

Û
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(x0,t0) ¦ g(x0 - h,t0) - 2 g(x0,t0) + g(x0+h,t0)

h2

The Method of Finite Differences

We can use the approximation formulas above to rewrite a PDE by replacing its partial derivatives

with estimates. For example, we can rewrite the wave equation
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2u
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= f(x,t)

in the vicinity of a point (x0,t0) as

u(x0,t0-k) - 2 u(x0,t0) + u(x0,t0+k)

k2
- c2 u(x0 - h,t0) - 2 u(x0,t0) + u(x0+h,t0)

h2
¦ f(x0,t0)

Here I am assuming that the size of the step in the t direction, k, is not necessarily the same size as

the step in the x direction, h. This is quite common in practice, so we have to be be careful to keep

these step sizes distinct.

One application of this approximation is that it can be used to express u(x0,t0+k) in terms of values
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u(x0,t0+k)
with earlier values of t. Solving the equation above for u(x0,t0+k) turns this approximation into an

evolution formula that shows how the solution evolves in time.

u(x0,t0+k) = k2 f(x0,t0)+c2 k2 u(x0 - h,t0) - 2 u(x0,t0) + u(x0+h,t0)

h2
-u(x0,t0-k)+2 u(x0,t0)

This allows us to drive the solution forward in time using values that we have already computed.

Part of the information we will need to go forward in time will come from one of the boundary

conditions:

u(x0,0) = ó(x0)

The only complication is that to go forward from t0 to t0 + k we will also need to know what

happened at t0-k. The boundary condition at t = 0 tells us what u(x0,0) should be, but it does not

tell us what u(x0,-k) is. To deal with that complication we will introduce a trick.

The trick is to use the centered difference formula for Ûu
Ût

at (x0,0) in combination with the second

boundary condition:

›(x0) = Ûu
Ût

(x0,0) ¦ u(x0,k) - u(x0,-k)
2 k

The evolution formula itself gives us a second equation involving both u(x0,k) and u(x0,-k):

u(x0,k) = k2 f(x0,0)+c2 k2 u(x0 - h,0) - 2 u(x0,0) + u(x0+h,0)

h2
-u(x0,-k)+2 u(x0,0)

We can combine these equations to eliminate the u(x0,-k) term and express u(x0,k) in terms of

known quantities:

u(x0,k) = k
2

2
f(x0,0)+c2 k2 ó(x0 - h) - 2 ó(x0) + ó(x0+h)

2 h2
+ k ›(x0) + ó(x0)

Once u(xn,0) and u(xn,k) are known for a grid of sample points running from 0+h to l-h we can use

the evolution rule to drive us forward in time. The accompanying Mathematica notebook will show

how this works in practice.


