Green's Function for the Wave Equation - D'Alembert's method
We have already seen that the homogeneous wave equation on the real line
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can be solved by D'Alembert's method:
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The Green's function method is aimed at solving the non-homogeneous wave equation
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In order to solve this problem, we have to convert the non-homogeneous problem to a homogeneous problem. Once
again, the technique that allows us to accomplish this is a variant of Duhamel's principle. We start by solving

v(x,0) =0
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where s is a parameter. This can be solved directly by d'Alembert's method, giving
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Duhamel's principle then gives us a solution

! t px+c(t-s)
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Two adjustments are needed before we can put this solution into the standard Green's function form

u(x.f) = /0 B f: Glxt:y,s)f(y.s)dyds



The first is that we need to insert a function of y with the characteristic that it is 1 when
x-c(t-s)Ly<x+c(ts)
and 0 when y is outside this range. Rewriting the inequality slightly gives
-c(t-5) Ly-x<c(t-s)
or
| y=x| < c(t-s)
or
0<c(t-s)- | y-x|

The function that does what we want here is the Heaviside function:
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In terms of this Heaviside function we have that

x-c(t-5)

x+c(t-5) ©o
[ Laysydy= [ L HE@s) - 1 yx1) o) dy
2c¢ ™ 2c

As for the outer integral, all we have to note is that when s > ¢ we have that both c(#-s) and - | y-x | are negative and

the term H(c(t-s) - | y-x | ) will automatically be 0. This allows us to extend the outer integral from ¢ all the way to

oo for free, since the integrand will be 0 over that entire additional range.

Thus
usn= [ [ S - 1y s dyds
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and the Green's function for the wave equation on the real line is

G(xt;y,s) = LH(c(t—s) - yx|)
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Green's function on a bounded interval - Fourier Series method
We have already seen that the Fourier series solution to the PDE
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Ou(x,0)=0
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with Dirichlet boundary conditions can be obtained by writing the solution

u(x,t) = ian(t) sin (n_l” x>
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In terms of the Fourier coefficients of the forcing function
!
eu()=2 [ fux.) sin (n_ﬂ x) dx
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we get a set of ODEs to solve for the coefficients a,(¢):
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Once again, we can apply Duhamel's principle. We start by solving

d*v() 4 2 n?a? () = 0
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W(0) = 0
V/(O) = cu(s)

which has solution

v(t;s) = —L ¢,(s)sin(CLLZ 1)
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This leads to a solution for a,(¢):
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Next, we substitute
1
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to get
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Rearranging slightly gives
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Substituting this expression into

u(x,r) = ian(t) sin (rl_lﬂ x)
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gives
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and finally

u(x,t) = ‘/Ol fol 2 1( 2 gin(cnz (t—s))sin(nT” x) sin<”7” y))f(y,s) dyds
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The Green's function for the wave equation with Dirichlet boundary conditions on [0,/] is
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G(x,ty,s) = Z( 2 sin(%t (t's>)5in(”7” x) sin(n_ﬂy>> s<t
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Alternative derivation

The Green's function we just derived is quite a bit less elegant than the Green's function we derived earlier for the
wave equation on the real line. A natural question to ask is whether or not we can trick that earlier solution into

solving the wave equation with Dirichlet boundary conditions on [0,/].

One way to accomplish this is to modify the forcing function. Since we seek a solution that vanishes at 0 and I for
all time, one way we may be able to accomplish this is by introducing a forcing function that has special symmetry
properties designed to force the solution to vanish at these points. For example, if I want to construct a solution that

vanishes at the origin for all time, I could introduce a forcing function with the following symmetry:
fExn)=-f(t)for 0<x <1

This symmetry will guarantee that any wave travelling toward the boundary at x = 0 from the right will be met by
an equal and opposite wave travelling toward x = O from the left. Similarly, we can get waves to cancel at the right

boundary by forcing
fU+x,t)=-f(x,t)for 0<x <1

More generally, what we need to do is to introduce a function f(x,7) that is an odd periodic extension of the

original forcing function f{(x,f) defined on 0 <x <[
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In terms of this periodic extension, we have that
wen= [ [ SLHEs) - ) fs dyds
c

for all x in [0,/].

The big problem that remains with this solution is that the inner integral is over the wrong range. For a problem on
[0,/] we want that integral to be an integral fromy =0toy = 1.

The key to getting this to happen is to note that the odd periodic extension can be written as the sum of an infinite
number of translates of itself.

fan= X fin

n=-00

where

fulx,t) = ;‘(x,t) Qn-DI<x<@2n+1)1
0 otherwise
This can also be written

Fan = oy H - 1x-2n11)

This allows us to write

wen = [ [ Hews) - 1yx1) X f0) HA - |y-2n1])dyds
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Since the inner integral is periodic in y with period 2 [, we can shift the y integration back to the interval [-/,/]

giving us

[+ 0 / -
u(x,t)=2f0 [IZLCH(c(z-s)- Ix-y-2nl])f(ns)dyds
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Finally, we use the fact that f(y,s) is an odd function in the interval [-1,[] to write the first half of the inner integral

0 ~ )
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Thus
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/OIL(H(c(t—s)— |x-y-2nl|)-H(c(t-s) - |x+y-2nl|))f(y,s)dy
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We read off from this that

Gx,ty,s) = Z 2L(H(c(t—s)— |x-y-2nl|)-H(c(t-s) - |x+y-2nl|))
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