
Green's Function for the Wave Equation - D'Alembert's methodWe have already seen that the homogeneous wave equation on the real line∂2u∂t2 - c2 ∂2u∂x2 = 0u(x,0) = ψ(x)∂u∂t (x,0) = γ(x)can be solved by D'Alembert's method:u(x,t) = 2ψ(x-ct) + 2ψ(x+ct) + 2 c1 ∫ x+ctx-ct γ(s) d sThe Green's function method is aimed at solving the non-homogeneous wave equation∂2u∂t2 - c2 ∂2u∂x2 = f(x,t)u(x,0) = 0∂u∂t (x,0) = 0In order to solve this problem, we have to convert the non-homogeneous problem to a homogeneous problem. Onceagain, the technique that allows us to accomplish this is a variant of Duhamel's principle. We start by solving∂2v∂t2 - c2 ∂2v∂x2 = 0v(x,0) = 0∂v∂t (x,0) = f(x,s)where s is a parameter. This can be solved directly by d'Alembert's method, givingv(x,t;s) = 2 c1 ∫ x+ctx-ct f(y,s) d yDuhamel's principle then gives us a solutionu(x,t) = ∫ t0 v(x,t-s;s) d s = 2 c1 ∫ t0 ∫ x+c(t-s)x-c(t-s) f(y,s) d y d sTwo adjustments are needed before we can put this solution into the standard Green's function formu(x,t) = ∫ ∞0 ∫ ∞-∞ G(x,t;y,s)f(y,s) d y d s1



The first is that we need to insert a function of y with the characteristic that it is 1 whenx - c (t-s) ≤ y ≤ x + c (t-s)and 0 when y is outside this range. Rewriting the inequality slightly gives-c (t-s) ≤ y - x ≤ c (t-s)or y-x ≤ c(t-s)or 0 ≤ c(t-s) - y-xThe function that does what we want here is the Heaviside function:H(z) ={10 z ≥ 0z < 0In terms of this Heaviside function we have that∫ x+c(t-s)x-c(t-s) 2 c1 f(y,s) d y = ∫ ∞-∞ 2 c1 H(c(t-s) - y-x ) f(y,s) d yAs for the outer integral, all we have to note is that when s > t we have that both c(t-s) and - y-x are negative andthe term H(c(t-s) - y-x ) will automatically be 0. This allows us to extend the outer integral from t all the way to∞ for free, since the integrand will be 0 over that entire additional range.Thus u(x,t) = ∫ ∞0 ∫ ∞-∞ 2 c1 H(c(t-s) - y-x ) f(y,s) d y d sand the Green's function for the wave equation on the real line isG(x,t;y,s) = 2 c1 H(c(t-s) - y-x )Green's function on a bounded interval - Fourier Series methodWe have already seen that the Fourier series solution to the PDE∂2u∂t2 - c2 ∂2u∂x2 = f(x,t)u(0,t) = u(l,t) = 0u(x,0) = 02



∂u∂t (x,0) = 0with Dirichlet boundary conditions can be obtained by writing the solutionu(x,t) = ∑n = 1∞ an(t) sin( ln π x)In terms of the Fourier coefficients of the forcing functioncn(t) = l2∫ l0 f(x,t) sin( ln π x)d xwe get a set of ODEs to solve for the coefficients an(t):d2an(t)dt2 + l2c2 n2 π2 an(t) = cn(t)an(0) = 0an′(0) = 0Once again, we can apply Duhamel's principle. We start by solvingd2v(t)dt2 + l2c2 n2 π2 v(t) = 0v(0) = 0v′(0) = cn(s)which has solution v(t;s) = c n πl cn(s)sin( lc n π t)This leads to a solution for an(t):an(t) = ∫ t0 v(t-s;s) d s = ∫ t0 c n πl cn(s)sin( lc n π (t-s)) d sNext, we substitute cn(s) = l2∫ l0 f(y,s) sin( ln π y)d yto get an(t) = ∫ t0 c n πl l2∫ l0 f(y,s) sin( ln π y)d y sin( lc n π (t-s)) d sRearranging slightly gives 3



an(t) = ∫ t0 ∫ l0 (c n π2 sin( ln π y)sin( lc n π (t-s)))f(y,s) d y d sSubstituting this expression into u(x,t) = ∑n = 1∞ an(t) sin( ln π x)gives u(x,t) = ∑n = 1∞ (∫ t0 ∫ l0 (c n π2 sin( ln π y)sin( lc n π (t-s)))f(y,s) d y d s) sin( ln π x)and finally u(x,t) = ∫ t0 ∫ l0 ∑n = 1∞ (c n π2 sin( lc n π (t-s))sin( ln π x) sin( ln π y))f(y,s) d y d sThe Green's function for the wave equation with Dirichlet boundary conditions on [0,l] isG(x,t;y,s) = ⎧⎩⎨⎪⎪∑n = 1∞ (c n π2 sin( lc n π (t-s))sin( ln π x) sin( ln π y))0 s ≤ ts > tAlternative derivationThe Green's function we just derived is quite a bit less elegant than the Green's function we derived earlier for thewave equation on the real line. A natural question to ask is whether or not we can trick that earlier solution intosolving the wave equation with Dirichlet boundary conditions on [0,l].One way to accomplish this is to modify the forcing function. Since we seek a solution that vanishes at 0 and l forall time, one way we may be able to accomplish this is by introducing a forcing function that has special symmetryproperties designed to force the solution to vanish at these points. For example, if I want to construct a solution thatvanishes at the origin for all time, I could introduce a forcing function with the following symmetry:f (-x,t) = -f (x,t) for 0 ≤ x ≤ lThis symmetry will guarantee that any wave travelling toward the boundary at x = 0 from the right will be met byan equal and opposite wave travelling toward x = 0 from the left. Similarly, we can get waves to cancel at the rightboundary by forcing f (l+x,t) = -f (x,t) for 0 ≤ x ≤ lMore generally, what we need to do is to introduce a function f~(x,t) that is an odd periodic extension of theoriginal forcing function f(x,t) defined on 0 ≤ x ≤ l. 4



f~(x,t) ={f(x - n l,t)-f(x - n l,t) 0 ≤ x - n l ≤ l and n is even0 ≤ x - n l ≤ l and n is oddIn terms of this periodic extension, we have thatu(x,t) = ∫ ∞0 ∫ ∞-∞ 2 c1 H(c(t-s) - y-x ) f~(y,s) d y d sfor all x in [0,l].The big problem that remains with this solution is that the inner integral is over the wrong range. For a problem on[0,l] we want that integral to be an integral from y = 0 to y = l.The key to getting this to happen is to note that the odd periodic extension can be written as the sum of an infinitenumber of translates of itself. f~(x,t) = ∑n = -∞∞ fn(x,t)where fn(x,t) ={f~(x,t)0 (2 n - 1) l ≤ x ≤ (2 n + 1) lotherwiseThis can also be written fn(x,t) = f~(x,t) H(l - x - 2 n l )This allows us to writeu(x,t) = ∫ ∞0 ∫ ∞-∞ 2 c1 H(c(t-s) - y-x ) ∑n = -∞∞ f~(y,s) H(l - y - 2 n l ) d y d s= ∑n = -∞∞ ∫ ∞0 ∫ ∞-∞ 2 c1 H(c(t-s) - y-x ) f~(y,s) H(l - y - 2 n l ) d y d s= ∑n = -∞∞ ∫ ∞0 ∫ (2n + 1)l(2n - 1)l 2 c1 H(c(t-s) - y-x ) f~(y,s) d y d sSince the inner integral is periodic in y with period 2 l, we can shift the y integration back to the interval [-l,l]giving us u(x,t) = ∑n = -∞∞ ∫ ∞0 ∫ l-l 2 c1 H(c(t-s) - x - y - 2 n l ) f~(y,s) d y d sFinally, we use the fact that f~(y,s) is an odd function in the interval [-l,l] to write the first half of the inner integral∫ 0-l 2 c1 H(c(t-s) - x - y - 2 n l ) f~(y,s) d y = - ∫ l0 2 c1 H(c(t-s) - x + y - 2 n l )f(y,s) d y5



Thus ∫ l-l 2 c1 H(c(t-s) - x - y - 2 n l ) f~(y,s) d y =∫ l0 2 c1 (H(c(t-s) - x - y - 2 n l ) - H(c(t-s) - x + y - 2 n l ))f(y,s) d yWe read off from this thatG(x,t;y,s) = ∑n = -∞∞ 2 c1 (H(c(t-s) - x - y - 2 n l ) - H(c(t-s) - x + y - 2 n l ))

6


