
1

The Discrete Fourier Transform

Let a = (a0, a1, ..., an-1) be a sequence of complex numbers. The Discrete Fourier Transform of a is
a new sequence of numbers y = (y0, y1, ..., yn-1) where

yk = ¾
j = 0

n-1
aj (Ín

k)
j

(1)

Here Ín is the complex nth root of unity, Ín = e2 ¼ i/n.

The Fast Fourier Transform

Formula (1) provides a straight-forward algorithm for computing the discrete Fourier transform of a
sequence of numbers. Since the formula requires that we sum n terms for each of n values of k, the
basic algorithm requires a number of elementary arithmetic operations that is proporational to n2.
The Fast Fourier Transform (FFT) replaces the basic calculation (1) with a more efficient algorithm
that requires a number of elementary arithmetic operations that is proportional to n lg n. For large
values of n, n lg n is significantly smaller than n2, so the FFT will represent a significant
improvement over the naive algorithm used to compute the DFT.

The starting point for the FFT is the observation that the summation on the right hand side of (1)
looks like a polynomial. Specifically, if we introduce

A(x) = ¾
j = 0

n-1
aj xj

we see that the formula for the DFT can be written

yk = A(Ín
k)

FFT is based on a divide and conquer strategy. Specifically, we introduce two new functions

A[0](x) = a0 + a2 x + a4 x2 + Ù + an-2 xn/2-1

A[1](x) = a1 + a3 x + a5 x2 + Ù + an-1 xn/2-1

and note that

A(x) = A[0](x2) + x A[1](x2)

Where the recursion comes in is when we note that the computation of A[0] and A[1] looks like the
computation of a DFT on the two subsequences (a0, a2, a4, ..., an-2) and (a1,a3,a5, ...,an-1).

The trick that makes FFT successful is the fact that the sequences y[0] and y[0] returned by
Recursive-FFT(a[0]) and Recursive-FFT(a[1]) can be easily combined to produce the desired
sequence y.

2

Pseudocode for the FFT

Recursive-FFT(a)
1. n = length[a]
2. if n==1
3. then return a
4. Ín = e2¼ i/n

5. Í = 1
6. a[0] = (a0, a2, a4, …, an-2)
7. a[1] = (a1,a3,a5,…,an-1)
8. y[0] = Recursive-FFT(a[0])
9. y[1] = Recursive-FFT(a[1])
10. for k = 0 to n/2 - 1 do

11. yk = yk
[0] + Í yk

[1]

12. yk+n/2 = yk
[0] - Í yk

[1]

13. Í = Í Ín
14. return y

Computing the inverse DFT

Another useful mathematical accident is that the formula for the inverse DFT looks very similar to
(1):

aj = 1
n ¾

k = 0

n-1
yk (Ín

-j)
k

This means that we can use the same algorithm as before with the roles of a and y switched, Ín

replaced by Ín
-1, and an extra multiplication by a factor of 1/n.

Complex Fourier Series

Consider now the problem of solving the BVP with periodic boundary conditions on the interval
[-l,l]:

- d
2
u(x)
dx 2

= š u(x)

u(-l) = u(l)

du
dx

(-l) = du
dx

(l)

This problem is essentially the problem of finding eigenfunctions and eigenvalues of the differential
operator

3

LP u = - d
2
u(x)
dx 2

on a space of periodic functions.

One solution to this BVP is that the eigenfunctions are functions of the form

un
(1)(x) = sin(n ¼

l
x)

un
(2)(x) = cos(n ¼

l
x)

for n = 1, 2, … and

u0(x) = 1

for n = 0. The associated eigenvalues are

šn = n2 ¼2

l2

Another solution to the BVP uses complex-valued eigenfunctions

un(x) = ei n ¼ x/l

for n = 0, ±1, ±2, … and associated eigenvalues

šn = n2 ¼2

l2

These eigenfunctions are legitimate eigenfunctions in the sense that they solve the BVP.
Additionally, these eigenfunctions also satisfy appropriate orthogonality conditions, provided we
introduce the appropriate inner product for complex-valued functions. If u(x) and v(x) are two
complex-valued functions, we can define an L2 inner product by

(u(x),v(x)) = ½ l

-l
u(x)v(x) d x

Here v(x) is the complex conjugate of v(x).

It turns out that the eigenfunctions un(x) are orthogonal with respect to this inner product.

(un(x) , um(x)) = ½ l

-l
ei n ¼ x/lei m ¼ x/l dx = l

i (n-m) ¼
ei (n-m) ¼ x/l|-l

l

= l
i (n-m) ¼

ei (n-m) ¼ - l
i (n-m) ¼

e-i (n-m) ¼

4

= l
i (n-m) ¼

(cos((n-m) ¼) - cos(-(n-m)¼))

= 0

For n = m we have

(un(x) , un(x)) = ½ l

-l
ei n ¼ x/lei n ¼ x/l dx = ½ l

-l
ei n ¼ x/le-i n ¼ x/l dx = ½ l

-l
1 dx = 2 l

Complex Fourier series

Since the complex exponential functions

un(x) = ei n ¼ x/l

are legitimate eigenfunctions, we can now seek to express arbitrary functions f(x) as combinations of
these eigenfunctions.

f(x) = ¾
n = -²

²
cn ei n ¼ x/l

The coefficients cn are the complex Fourier coefficients of f(x). As usual, these coefficients are
computed via the orthogonality properties of the eigenfunctions un(x).

(f(x),uk(x)) = “
©‘ ¾
n = -²

²
cn ei n ¼ x/l , uk(x)”™’ = ck (uk(x) , uk(x)) = ck (2 l)

or

ck = (f(x) , uk(x))
2 l

= 1
2 l

½ l

-l
f(x) e-i k ¼ x/l dx

The main computational effort in computing a Fourier expansion lies in computing these integrals.
If we want to compute the Fourier coefficients for, say, k = -N up through and including k = N - 1
for some N we will have to compute a total of 2 N integrals.

Worse yet, some functions f(x) do not allow us to easily compute the resulting integrals in closed
form. In those cases, we have to estimate the Fourier coefficients the computing numerical estimates
for the integrals. One technique for doing this is the trapezoid rule

½b
a g(x) d x ¦ h

2
“©©©‘g(x0) + 2 ¾

j = 1

N-1
g(xj) + g(xN)

”™™™’

The trapezoid rule assumes that we are subdividing the interval [a,b] into N equal length
subdivisions of length h = (b-a)/N at the division points xj = a + j h.

To apply the trapezoid rule to the problem of estimating Fourier coefficients, we subdivide the
interval [-l,l] into 2 N subdivisions of length h = (2 l)/(2 N) = l/N at division points xj = j h for j
ranging from -N to N. This gives us

5

ck = 1
2 l

½ l

-l
f(x) e-i k ¼ x/l dx ¦ 1

2 l
h
2

“©©©‘f(x-N)e-i k ¼ x-N/l + 2 ¾
j = -N+1

N-1
f(xj)e

-i k ¼ xj/l + f(xN)e-i k ¼ xN/l”™™™’

If we assume that f(-l) = f(l) this simplifies to

ck = 1
2 N

“©©©‘ ¾
j = -N

N-1
f(xj)e

-i k ¼ xj/l”™™™’

Using the FFT to compute Fourier coefficients

The final formula we developed above bears an intriguing resemblance to an in inverse FFT.

If we take advantage of the periodicity of the function f(x) and the exponential terms, we can shift
the summation by recognizing that for j from -N up to -1 we have

f(xj)e
-i k ¼ xj/l = f(xj+2N)e-i k ¼ xj+2N/l

so that the portion of the sum from -N up to -1 can be replaced by a sum from N to 2 N - 1.

ck = 1
2 N

“©©©‘¾j = 0

2N-1
f(xj)e

-i k ¼ xj/l”™™™’

Also, if we rewrite the terms

e-i k ¼ xj/l

as

e-i 2 ¼ k xj/(2l) = e-i 2 ¼ k (j (2l)/(2 N))/(2l) = e-i 2 ¼ k j /(2 N)

we recognize these factors as

(Í2N
-j)

k

Thus we see that the coefficients we are trying to compute look like

ck = 1
2 N

“©©©‘¾j = 0

2N-1
fj (Í2N

-j)
k”™™™’

where fj = f(xj) = f(j h). This is precisely the form of an inverse FFT of a sequence of 2 N data
points {fj}. The accompanying Mathematica notebook will show the details in an example.

