Differential Operators

Consider the differential operator
L(u(z)) =- T4 (u(x))
dz?

acting on the space * [0,1] of twice-continuously differentiable functions on the closed interval [0,[].
This operator is a linear operator, because
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We want to bring the methods of chapter 3 to bear on this operator to solve equations of the form

Boundary Conditions

One problem with the operator as described above is that it does not have a trivial null space. The
null space of this operator is the set of all functions that satisfy
2

L(u(z)) =- T %(U(x)) =0

It is easy to see that any function of the form
ux)=ax+b

satisfies this equation, giving the operator L a non-trivial null space. This in turn makes the
solutions to the differential equation non-unique.

The usual fix for this problem is to impose extra conditions on the equation. If we require that
solutions to

2
T4 (u(#) = 0
dz?
also satisfy the Dirichlet boundary conditions
w(0) = uw(l) =0

then the only function in the null space will be the function
u(z) =0

Another way to look at this is to say that we have restricted the original operator to act on a
subspace CDQ[O,I] of [0,l], called the Dirichlet subspace. This subspace consists of all twice



continuously differentiable functions on [0,/] that vanish at the boundary.
Symmetry

The space of functions that we are operating on, C’D2[O,1], is also an inner product space. On this
space we use the inner product

(u,v) = folu(x)v(w) dz

The operator L is a symmetric operator on this space:

(Lu,v) f‘ |v(q:)da; |Td |\0—i—f|T ||dvx|

\dz

=0+ Tu(z | |\0—fTu ‘ z))|dz

\dx )‘

;o 2 \
:fu@%4r£¥@@mwx
=(u,Lwv)

Here we have used integration by parts twice and twice applied the fact that both u(z) and v(z)
vanish at both 0 and /.

Eigenvalues and Eigenfunctions

An eigenfunction of the differential operator L is a function on C D2[O,1] that satisfies the equation
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or equivalently

with boundary conditions

Using methods from Math 210, we can solve this equation and see that solutions take the form

u(x) = sin(ﬁ )

where )\ has to be chosen so that
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for n = 1, 2, 3, ... so that u(z) will vanish at z = I. Thus we see that the operator has an infinite
number of eigenvalues
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with associated eigenfunctions

up(x) = sin |(M x\l

Solving by the Spectral Method

We have seen that if a linear operator has a complete set of eigenfunctions and eigenvalues we can
use the spectral method to solve problems of the form

by using eigenfunction expansions. We seek to write the solution
u(z) = 216” Un ()

We solve for the unknown coefficients by writing the right hand side as an expansion in the
eigenfunctions:

(@) = 3, du ()
Once we have determined the expansion coefficients d, we can solve the problem.

L(u(@) = L[5 en un(@)] = 2 en Ao ua(e) = fla) = X dy un()

n=1

Since the eigenfunctions form a basis for our space and are independent, this equation can be solved

by setting
or
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The only thing left to do here is to compute the d, coefficients. We do this by using the inner
product:
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(up(z) , up())
These coefficients, called Fourier coefficients, are computed by using the integral definition of the
inner product.
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Noting that
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this simplifies to

Computing a finite approximation

The expansion of the function f{z) in terms of eigenfunctions

f2) = ¥ dy unla)

n=1

has an infinite number of terms. In practice, we can compute only finitely many Fourier coefficients.
This produces a finite approximation
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which in turn leads to a finite approximation for the solution:
L(uy(z)) = fi(2)

where
N
u(@) = 3 en @)

where as before
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We leave it as an open question for now whether the function wuy(z) is the closest approximation to
the actual solution to the equation

L(u(z)) = fn(x)

in the subspace of functions that take the form

upn(z) = é\/] cn ()

n=1



