
1

The method of characteristics

The method of characteristics is a method that is frequently used to solve first order PDEs. The
simplest such PDEs take the form

a Ûu(x,y)
Ûx

+ b Ûu(x,y)
Ûy

= 0

u(x,0) = u0(x)

The method uses a change of variables to simplify the problem. Specifically, we seek new variables s
and t such that after the change of variables the PDE simplifies to

Ûu(x(s,t),y(s,t))
Ût

= 0

We can use the chain rule to help us determine what the change of variables should be by noting
that

0 = Ûu(x(s,t),y(s,t))
Ût

= Ûu
Ûx

Ûx
Ût

+ Ûu
Ûy

Ûy
Ût

Comparing this with the original PDE

a Ûu(x,y)
Ûx

+ b Ûu(x,y)
Ûy

= 0

shows that we should set

Ûx
Ût

= a

Ûy
Ût

= b

A further requirement on the new variables is that the initial curve, which is the curve on which the
initial conditions are specified, should correspond to the curve t = 0.

In the simplest first order PDEs the initial curve is the line y = 0. This suggests that we should
choose

y(s,0) = 0

x(s,0) = s

Putting all of these requirements together gives us a pair of simple PDEs that the functions x(s,t)
and y(s,t) must satisfy
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Ûx(s,t)
Ût

= a

x(s,0) = s

Ûy(s,t)
Ût

= b

y(s,0) = 0

These equations are easily solved to yield

x(s,t) = a t + s

y(s,t) = b t

Once we have solved for x and y we can finish solving the PDE. If we introduce

v(s,t) = u(x(s,t),y(s,t))

the PDE reduces to

Ûv(s,t)
Ût

= 0

v(s,0) = u(x(s,0),y(s,0)) = u0(s)

which has solution

v(s,t) = u0(s)

The final step is to invert the equations for x and y to express s and t as functions of x and y:

t = y/b

s = x - a t = x - a
b

y

This allows us to express the solution v(s,t) as a function of x and y:

v(s,t) = u0(s) = u0(x - a
b

y) = u(x,y)

An outline of the method

To summarize, we seek a change of variables that maps the initial curve to the line t = 0 and
simplifies the original PDE to

Ûv(s,t)
Ût

= 0
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This condition basically says that along curves of fixed s the solution is a constant. These curves of
fixed s are called characteristic curves. Solving the PDEs for x and y as functions of s and t and
inverting will allow us to compute the characteristic curves.

Here is a complete outline of the method applied to a more general first order linear PDE of the form

a(x,y) Ûu
Ûx

+ b(x,y) Ûu
Ûy

+ c(x,y) u = d(x,y)

u(x,0) = u0(x)

Require that1.

Ûx(s,t)
Ût

= a(x(s,t),y(s,t))

x(s,0) = s

Ûy(s,t)
Ût

= b(x(s,t),y(s,t))

y(s,0) = 0

Solve these PDEs for x(s,t) and y(s,t).2.

Invert the formulas to obtain s(x,y) and t(x,y).3.

Solve the PDE4.

Ûv(s,t)
Ût

+ c(x(s,t),y(s,t)) v(s,t) = d(x(s,t),y(s,t))

v(s,0) = u0(x(s,0))

Construct the solution5.

u(x,y) = v(s(x,y),t(x,y))

An example

This is example is based on example 8.4 from the text.

y Ûu
Ûx

+ Ûu
Ûy

+ x u = x

u(x,0) = x

We now follow the steps outlined above.
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1. Solve the equations for x and y as functions of s and t. (Typically we solve the easier of the two
PDEs first and use that result to help solve the other PDE.)

Ûy(s,t)
Ût

= 1

y(s,0) = 0

y(s,t) = t

Ûx(s,t)
Ût

= y(s,t) = t

x(s,0) = s

x(s,t) = s + t
2

2

2. Invert these equations to obtain

t = y

s = x - t
2

2
= x - y

2

2

3. The PDE for v becomes

Ûv(s,t)
Ût

+ c(x(s,t),y(s,t)) v(s,t) = d(x(s,t),y(s,t))

Ûv(s,t)
Ût

+ x(s,t) v(s,t) = x(s,t)

Ûv(s,t)
Ût

+ (s + t
2

2
) v(s,t) = s + t

2

2

v(s,0) = x(s,0) = s

We can solve the latter PDE by treating s as a parameter and constructing an ODE for v(s,t) =
ws(t):

ws
·
(t) + (s + t

2

2
) ws(t) = s + t

2

2

ws(t) = s

This ODE has solution

ws(t) = 1 + (s-1) e-s t - t2/2
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4. We substitute the expressions for s and t to obtain

u(x,y) = 1 - (1 - x + y
2

2
) e-x y + y3/3

Quasi-linear first order PDEs

The method described above can be extended to deal with first order quasi-linear PDEs

a(x,y,u) Ûu
Ûx

+ b(x,y,u) Ûu
Ûy

= c(x,y,u)

u(x,1) = u0(x)

The major difference here is that instead of solving PDEs for x and y and then solving a PDE for v
we will have to treat all three PDEs as a single, coupled system:

Ûx
Ût

= a(x,y,v) ; x(s,0) = s

Ûy
Ût

= b(x,y,v) ; y(s,0) = 1

Ûv
Ût

= c(x,y,v) ; v(s,0) = u0(s)

Here is example 8.7 in the text.

u Ûu
Ûx

+ y Ûu
Ûy

= x

u(x,1) = 2 x

The system to solve is

Ûx
Ût

= v ; x(s,0) = s

Ûy
Ût

= y ; y(s,0) = 1

Ûv
Ût

= x ; v(s,0) = 2 s

Treating s as a parameter and solving this as a system of linear ODEs gives

x(s,t) = 3 et - e-t

2
s

y(s,t) = et
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u(s,t) = 3 et + e-t

2
s

Inverting these equations gives

t = ln y

s = 2 x
3 y - 1/y

u(x,y) = 3 y + 1/y
2

2 x
3 y - 1/y

= (3 y2 + 1) x

3 y2 - 1

Limitations of the method

The examples above demonstrate that this method works for a variety of first order PDEs. There
are however a couple of 'choke points' in the method where a particular problem may prove difficult
or impossible to solve.

The first of these comes when we have to solve the equations involving Ûx
Ût

, Ûy
Ût

, and possibly also

Ûv
Ût

. Without too much effort we can concoct examples in which the resulting sets of equations are

simply too hard to solve. Consider this minor variation on the last example.

Ûx
Ût

= v ; x(s,0) = s

Ûy
Ût

= y ; y(s,0) = 0

Ûv
Ût

= x v ; v(s,0) = 2 s

This is a system of nonlinear ODEs, and can not be solved by any standard solution method.

The second problem comes when we manage to solve for v(s,t) and then discover that the equations
for x(s,t) and y(s,t) are just too difficult to invert. This makes it practically impossible to solve for
u(x,y).

A third problem is that this method relies on the initial curve not also being a characteristic curve.
If that happens, we may find that the original PDE has no solutions, or an infinite number of
solutions.


