Outline of Lecture #1: D.C. Circuits

This lecture covers the concepts and principles used to analyze *circuits* containing batteries (and other sources of steady *electromotive force*) and *resistors* in which steady *currents* and *voltages* are present.

Basic Concepts:

- Circuit
- Current (I): units = Amperes (A)
- Voltage or electric potential (V): units = Volts (V)
- Ground
- Resistance (R): units = Ohms (Ω)
- Electromotive force ($\boldsymbol{\mathcal{E}}$): units = Volts (V)

Principles:

•	Ohm's Law:	V = IR
---	------------	--------

- Power: P = IV
- Kirchoff's Rules • Loop rule: $\sum V = 0$
 - Junction rule: $\sum I = 0$
- Thevenin's Theorem output (or internal resistance)

Examples:

- Combining resistors in series: $R_{eq} = R_1 + R_2 + R_3$
- Combining resistors in parallel: $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$
- Voltage divider: $V_{out} = \frac{R_2}{R_1 + R_2} V_{in}$