Outline of Lecture \#2: A.C. Circuits

This lecture covers the concepts and principles used to analyze circuits containing, alternating (or oscillating) power supplies, resistors, capacitors, and inductors.

Concepts:

- Capacitance and capacitors: units $=$ Farads (F)
- Inductance and inductors: units = Henrys (H)
- Angular frequency, $\omega=2 \pi f$: units = radians $/ \mathrm{sec}$
- Impedance: units $=$ Ohms (Ω)
- Decibels
- Phasors

Principles:

- Voltage across a capacitor:

$$
V=\frac{Q}{C} \quad \text { or } \quad \tilde{V}=\tilde{I}\left(\frac{-j}{\omega C}\right)
$$

- Voltage across an inductor:

$$
V=L \frac{d I}{d t} \text { or } \tilde{V}=\tilde{I}(j \omega L)
$$

- Complex Ohm's Law:

$$
\tilde{V}=\tilde{I} Z
$$

- Energy stored in a capacitor:

$$
\begin{aligned}
& W=\frac{1}{2} C V^{2}=\frac{Q^{2}}{2 C}=\frac{1}{2} Q V \\
& W=\frac{1}{2} L I^{2}
\end{aligned}
$$

- Energy stored in an inductor:

Examples:

- Combining capacitors in parallel:

$$
\begin{aligned}
& C_{e q}=C_{1}+C_{2}+C_{3} \\
& \frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}
\end{aligned}
$$

- Combining capacitors in series:
- Inductors combine like resistors
- RC filter circuits: high-pass, low-pass
- RLC resonant circuits: mechanical analog

