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Abstract

The core/periphery structure is ubiquitous in network studies. The discrete version of the concept
is that individuals in a group belong to either the core, which has a high density of ties, or to the
periphery, which has a low density of ties. The density of ties between the core and the periphery
may be either high or low. If the core/periphery structure is given a priori, then there is no problem
in finding a suitable statistical test. Often, however, the structure is not given, which presents us
with two problems, searching for the optimal core/periphery structure, and devising a valid statistical
test to replace the one invalidated by the search.UCINET [Borgatti, S.P., Everett, M.G., Freeman,
L.C., 2002.UCINET for Windows, Version 6.59: Software for Social Network Analysis. Analytic
Technologies, Harvard], the oldest and most trusted network program, gives incorrect answers in some
simple cases for the first problem and does not address the second. This paper solves both problems
with an adaptation of the Kernighan–Lin search algorithm, and with a permutation test incorporating
this algorithm.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The idea that some groups or organizations have core/periphery structures has enjoyed
considerable historical mention in social network analysis (e.g.,Laumann and Pappi, 1976;
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Alba and Moore, 1978; Mintz and Schwartz, 1981). This notion continues to be employed
in studies including scientific citation networks (Doreian, 1985), world economy (Smith
and White, 1992), corporate structure (Barsky, 1999), and small groups (Beck et al., 2003,
submitted for publication; Cummings and Cross, 2003).

Borgatti and Everett (1999)presented several formal models for core/periphery struc-
tures, which were incorporated into the most widely used network analysis program,
UCINET (Borgatti et al., 2002), for general application. Given a square data matrix,UCINET
finds a core/periphery structure in two possible ways: either it computes the degree of “core-
ness” for each node or actor in a matrix (continuous model), or it finds a labeled bipartition
of these nodes or actors, core and periphery subgroups (discrete model). We shall restrict
our attention in this paper to the discrete model, revisiting the continuous model in another
paper.

The output for each model inUCINET also includes an overall measure of “fitness” that
indicates how well the observed data approximates an ideal core/periphery structure. A high
fitness measure implies a good agreement with the model, while a lower fitness measure
suggests that the model should be rejected. However, since there is no test for the statistical
significance of fitness,UCINET users are left without the benefit or comfort of ap-value.

In other words, asBorgatti and Everett (1999)point out, this overall fitness value does
not tell us the likelihood of obtaining, by chance alone, a value as high as the one actually
observed. This is a problem when the core/periphery bipartition is not given a priori, but is
instead selected to be optimal, or even close to optimal. This is similar to the statistical prob-
lem of determining the difference between two groups that is the output from a clustering
program—obviously, running a simplet-test would be wrong. Although a solid statistical
underpinning for these optimal core/periphery models would significantly strengthen both
their usefulness and substantive interpretation,Borgatti and Everett (1999)did not specify
a statistical test of significance. They maintain that this is because it is necessary to first
have a theory about how ties are formed, and then to generate a null model specific to
the substantive context and to the type of data at hand. Therefore, because each unique
dataset demands its own null model, a universal permutation test would not be appropriate
(1999:393–394).

From a pragmatic standpoint, this situation leaves researchers somewhat frustrated. The
concept of a core/periphery structure is one of a number of viable a priori models, which if
consistent with data, may have important substantive consequences and theoretical implica-
tions. Thus, we would like a more decisive and efficient way to assess the basic applicability
of this model than is currently available. At this initial stage, it would be desirable to have
some kind of generic permutation test (Good, 1994) that could be employed in most, if not
all, situations to obtain the significance of an observed fitness value. With this solution, we
would readily be able to tell whether we should move on to other models, or if it might be
more fruitful to develop more specific and more powerful statistical tests based on models
of tie formation as called for byBorgatti and Everett (1999). In other words, it is better
to have a statistical test for even a simple null hypothesis, even though it may not be as
complex as one would like. We will point out possible directions for more complex models
in the discussion section.

In this paper, we propose and develop such a universal permutation test for the discrete
core/periphery model. We believe that this test would be useful in most situations where
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researchers need a ready assessment of whether their data are consistent with a discrete
core/periphery structure. The general idea is to compare the fitnessf0 of the original data
with a large number of fitness values,f1, . . ., fN, obtained from permutations of the off-
diagonal elements of the data matrix. Iff0 is larger than 95% of the fitness values of the
permuted matrices, then the null hypothesis would be rejected.

To develop this permutation test, however, we first need to know that the genetic
search algorithm (Goldberg, 1989) implemented inUCINET actually finds the optimum
core/periphery bipartition. In the help files for this routine,Borgatti et al. (2002)stress that
this algorithm may find only local maxima, and suggest multiple runs with different starting
configurations. Failure to find the optimum solution forf0 can increase the likelihood of a
Type II error. Thus, we may decide that our data do not exhibit a core/periphery structure
when in fact they do. The best way to minimize the likelihood of a Type II error is to be sure
that the search algorithm actually finds the global maximum. Even if the global optimum
cannot be guaranteed, then we should at least ensure that the search algorithm is close to
optimal and that it performs as well on the permuted data as on the original data (Boyd and
Jonas, 2001; Boyd, 2002).

In the next section, we will briefly review the alternative fitness criteria for the discrete
core/periphery model. Next, with the help of an exhaustive search algorithm, we will com-
pare fitness values from smaller data sets usingUCINET and three other algorithms. We
include an alternative implementation of the genetic algorithm (Goldberg, 1989), a sim-
ulated annealing algorithm (Kirkpatrick et al., 1983), and the Kernighan–Lin algorithm
(Kernighan and Lin, 1970; Aarts and Lenstra, 1997; see ourAppendix A). We will make
similar comparisons, excluding exhaustive search, using larger datasets. Finally, we will
present and discuss our proposed permutation test.

2. UCINET discrete core/periphery fitness measures

In UCINET, the genetic algorithm for finding discrete core/periphery bipartitions has
five fit function options. Depending upon your choice of fit function, the algorithm will try
to minimize or maximize the value of the associated fitness measure.1

The default categorical fit function is the “CORR” option, which we will focus on for
the remainder of this paper. In this case, the genetic algorithm attempts to maximize the
Pearson product moment correlation between the permuted observed data matrix and an
appropriate ideal core/periphery pattern matrix. The pattern matrix has ones in the core
block and zeros in the periphery block. If the density of core/periphery and periphery/core
blocks is specified, then this value will be placed in all cells of these off-diagonal blocks in
the ideal matrix.2

Alternatively, treating these off-diagonal blocks as missing, as is recommended by
Borgatti and Everett (1999), results in missing values in these cells. We agree that this
is theoretically and substantively the most sensible approach and we use it in the following
sections. In this context, the correlation between the observed permuted data matrix and

1 Four of the five fit functions are briefly explained in the help files. The “HAMMING” option is not mentioned.
2 It is not clear that this specification is meaningful for valued data.
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the ideal matrix is focused exclusively upon the defining characteristics of what we mean
by a core/periphery structure, allowing for the clearest interpretation of the fit function.3

That is, we attempt to find the core/periphery bipartition that simultaneously maximizes
connectivity in the core block and minimizes connectivity in the periphery block, while
ignoring off-diagonal blocks.

These two assumptions, using the correlation function and ignoring the off-diagonal
blocks, imply that if the correlation fitness for a given core/periphery structure isf, then the
fitness for the structure that switches all core/periphery labels is−f.

3. Comparing algorithms where the global optimum is known

A conclusive way to assess whether a search algorithm actually finds the global opti-
mum is to perform an exhaustive search and compare these results to those from the search
algorithm. This method becomes impractical for large matrices because the number of pos-
sible labeled bipartitions (core/periphery structures) increases exponentially with the linear
dimension of the matrix. More precisely, the number of nontrivial (where both the core
and the periphery have at least two members) labeled bipartitions for ann × n matrix is
2n − 2n − 2. The exponential term, 2n, corresponds to the number of subsets (not biparti-
tions, since one must specify which block is the core), while the negative terms exclude cores
or peripheries with fewer than two points. However, this problem is tractable with smaller
datasets. For example, ifn = 8, the number of possible nontrivial labeled bipartitions is 238.
If we perform exhaustive searches on small datasets to obtain the best core/periphery bipar-
tition, as measured by maximizing the Pearson product moment correlation, we can easily
compare these results to the core/periphery bipartitions found by the genetic algorithm in
UCINET, which uses the same fit function.

We will illustrate this comparison using 12 pre-service teacher online discussion groups,
each with eight participants. This dataset consists of twelve 8× 8 non-negative integer
valued matrices, which are not symmetric, and where the diagonal elements are undefined.
These matrices represent all the messages sent and received between group members over
a set period of time. The experimental procedures and substantive interpretations for these
data can be found inBeck et al. (2003)andBeck et al. (submitted for publication).

The best way to compare heuristic algorithms is to establish the correct answers via an
algorithm, no matter how inefficient, known to be correct. The simplest such algorithm is
an exhaustive search of all the possible core/periphery structures to establish the global
optimum core/periphery bipartition for each of these matrices. To accomplish this task, we
programmed an exhaustive search inMathematica (Wolfram, 2003). The highest matrix
correlation and the core membership of the associated labeled bipartition are shown in
columns 2 and 3 ofTable 1.

Each of these matrices was also subjected to the comparableUCINET procedure. As is
suggested, several starting configurations were used for each matrix. The highest correlation
and the core membership of its associated labeled bipartition are shown in columns 4 and

3 In addition, this approach allows us the necessary empirical context to test for the type of core/periphery
structure that our data exhibit.
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Table 1
Comparison of core/periphery fitness measures usingBeck et al. (2003, submitted for publication)data

Group # Exhaustive searcha UCINET genetic algorithm

Fitness Core membership Fitness Core membership Rank

1 0.867 C,D,E 0.570 A,B,C,D,E 19
2 0.834 A,D,F,G 0.672 B,D,E,F,G 10
3 0.650 D,E,F,H 0.650 D,E,F,H 1
4 0.875 B,F 0.737 B,C,F 2
5 0.559 A,B,E,G,H 0.467 A,B,E,F,G,H 10
6 0.656 C,E,H 0.444 C,D,E,G,H 19
7 0.565 A,C,E,F,G 0.398 A,C,D,E,H 18
8 0.625 A,B,D 0.501 A,B,C,D,G 4
9 0.728 B,G,H 0.689 B,E,G,H 3

10 0.645 A,D,H 0.645 A,D,H 1
11 0.535 C,E,F,G 0.471 B,C,E,F,G 2
12 0.672 C,D,F,G 0.529 C,D,F,G,H 5

a Same results for alternative genetic, simulated annealing, and Kernighan–Lin algorithms.

5 of Table 1. Column 6 ofTable 1compares the results from theUCINET (Version 6.59)
algorithm to the exhaustive search by showing the rank out of the 238 possible fitness values
that was actually found byUCINET. For example, a rank of 1 indicates thatUCINET found
the global optimum from at least one of several starting configurations for a given matrix.
Similarly, a rank of 5 indicates thatUCINET’s best result was fifth best compared with the
exhaustive list of possible nontrivial fitness values.

To increase the comparative value of this exercise, we selected three additional optimiza-
tion search algorithms that might also have general applicability. For the first two algorithms,
we used two ofMathematica’s built-in algorithms: a genetic algorithm, referred to there
as “differential evolution”, and a simulated annealing algorithm to optimize our fitness
criterion. Finally, we programmed inMathematica our own version of theKernighan and
Lin (1970)algorithm (seeAppendix A), again using the same fitness criterion. For all 12
groups, all three of these algorithms matched the exhaustive search by consistently finding
the global optimum from several starting configurations.

From the results inTable 1, the genetic algorithm inUCINET finds the global optimum
in two out of our 12 cases. TheUCINET fit statistic is among the five best for seven of the
12 cases, and among the 10 best for nine of the 12 cases. All 12 solutions are in the top 20
out of the 238 possible solutions.

While it is next to impossible to debug a program without looking at the code, a com-
parison of the results fromUCINET and the exhaustive searches does suggest a possible
pattern. In the 10 cases where the two solutions are different, the difference in the mean
of the core block values and the mean of the periphery block values is larger for nine of
the UCINET labeled bipartitions, and is the same for one case. These findings are more
consistent with the analogy used byBorgatti and Everett (1999:384)when discussing the
application of the discrete core/periphery model to valued data. Although maximizing this
difference is a potentially defensible and interpretable fit criterion, it is not the stated fitness
criterion in either their article or inUCINET.
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Table 2
Comparison of core/periphery fitness measures usingBaker (1992)data

Data type UCINET genetic algorithma Simulated annealing algorithm

Fitness Core membership Fitness Core membership

Asymmetric, dichotomous 0.826 CW, JSWE, SCW,
SSR, SW, SWRA

0.712 BJSW, CW, CYSR,
JSWE, PW, SCW,
SSR, SW

Valued, symmetric 0.815 SCW, SSR, SW 0.575 ASW, CYSR,
CSWJ, SSR, SW

a Same results for alternative genetic and Kernighan–Lin algorithms.

4. Comparing algorithms where global optimum is unknown

Considering our results for relatively small data sets, it would also be useful to compare
these same algorithms using somewhat larger data sets to see if there are any differences
in this context. We made this comparison with the same data used byBorgatti and Everett
(1999)to demonstrate the detection of discrete core/periphery structures in data.Baker’s
(1992)data reflect the number of citations from one journal to another among 20 social work
journals over a 1-year period between 1985 and 1986. Given the computational require-
ments (220− 42 = 1,048,534 possible nontrivial core/periphery bipartitions), an exhaustive
search was not carried out. Instead, we use the results fromUCINET as a benchmark.
Table 2compares the algorithms using the asymmetric dichotomous matrix (Borgatti and
Everett, 1999:385 Table 7) and the valued symmetric matrix (Borgatti and Everett, 1999:386
Table 8)4 of theBaker (1992)data. Consistent withBorgatti and Everett’s (1999)analyses,
diagonals for both matrices are ignored.

The results shown for bothUCINET and the simulated annealing algorithm represent
the best fitness obtained from 10 different starting configurations, which did vary for both
algorithms. The alternative genetic algorithm (differential evolution) and the Kernighan–Lin
algorithm match, but do not improve upon, the bestUCINET genetic algorithm results,
but they both consistently produce the same results from multiple starting configurations.
For these data,Table 2shows that the simulated annealing algorithm, as implemented in
Mathematica, does not perform nearly as well as the others.

Taken together, these two illustrations suggest that theUCINET implementation of the
genetic algorithm andMathematica’s version of the simulated annealing algorithm are
not the best choices for consistently finding global optima for discrete core/periphery
bipartitions of both small and larger sized data sets. It would be unwise to develop a
generic permutation test for fitness values from these two algorithms because of the
increased likelihood of Type II errors.Mathematica’s version of the genetic algorithm
and our implementation of the Kernighan–Lin algorithm are both superior choices for
this purpose. To select the better of these two choices, we considered relative computing
time.

4 Borgatti and Everett (1999:385)describe this as the “raw” citation data. However, an inspection of the table
shows that it was actually symmetrized by choosing the larger ofaij andaji, with two errors (SW-BJSW and
ASW-JSWE cells).
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The best core for the 20× 20 Baker (1992)asymmetric binary data, found by both the
Kernighan–Lin (in 3.0 s)5 and differential evolution (35 s) algorithms, was{CW, JSWE,
SCW, SSR, SW, SWRA}, with fitness 0.82561. Unfortunately, simulated annealing (in
43 s) found a suboptimal core, with a fitness of only 0.63457, that differs from the previous
core by the addition of the journals CYSR, JSP, and SWG. Note that if any one of these
three added journals is switched to the periphery, there is a gain in fitness, showing that
the simulated annealing solution is not even a local optimum. Finally, the Kernighan–Lin
algorithm has been estimated to run inO(n logn) time for the graph partition problem
(Fiduccia and Mattheyses, 1982). Conclusion: the Kernighan–Lin solution is tied with
differential evolution for the quality of its solutions, but is much faster, which is important
when doing a permutation test requiring 1000 or more repetitions of the algorithm.

5. A generic permutation test for discrete core/periphery fitness values

Now that we are fairly confident that we have a reasonably fast search algorithm that
finds, or at least closely approximates, the global optimum, we would now like to attach
a significance or probability value to our observed fitness value. Again, our objective is to
develop a permutation test that will enable us to ascertain the likelihood of obtaining by
chance alone a fitness value as high as our observed fitness value. Ideally, we would like
this permutation test to be applicable for all types of data that could conceivably be tested
for evidence of a discrete core/periphery structure (e.g., binary or valued, symmetric or
directed).

To do this, we would need to effectively reverse the argument as stated byBorgatti
and Everett (1999:393–394). We require a method of permutation that is independent of the
context of our data so that any assumptions about how ties form are minimized. Additionally,
this generalized permutation test still needs to be specific enough to a particular dataset to
allow for a meaningful and interpretable comparison of an observed fitness value to a
permutation baseline.

A reasonable solution here is to preserve and focus upon permutations of the cell distri-
bution of the matrix (or the edge distribution of the graph), which also preserves the total
number of ties. However, row and column marginals are not preserved. For each permuta-
tion of the cell distribution, we also want to obtain its optimal core/periphery bipartition and
record the fitness value. By generating a large number of these permutations and record-
ing the fitness values, we can compare our observed fitness value to this distribution of
permutation fitness values to calculate a likelihood of observing by chance alone a fitness
value equal to or higher than our observed fitness value. We can then use this probability
in combination with our observed fitness value to make a more definitive assessment of the
degree to which data exhibit a core/periphery structure.

The p-value from the permutation test is defined as the proportion of fitness valuesfi
from the random permutations that are greater than or equal to the observed fitnessf0 (on the
original data). A highp-value, say greater than 0.05, suggests that the observed data may not
be adequately described by a core/periphery structure. By contrast, a lowp-value indicates

5 Timed for a Dell Inspiron 8200 with a 1.7 GHz Pentium 4. The programs were not optimized.
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Table 3
Permutation tests forBeck et al. (2003, submitted for publication)data

Group # Run 1a Run 2a Run 3a

1 0.000 0.000 0.000
2 0.000 0.000 0.000
3 0.043 0.044 0.041
4 0.000 0.000 0.001
5 0.150 0.184 0.174
6 0.035 0.034 0.034
7 0.134 0.169 0.170
8 0.053 0.049 0.044
9 0.006 0.011 0.004

10 0.048 0.036 0.046
11 0.271 0.282 0.279
12 0.022 0.015 0.016

a N = 1000.

that only a very small proportion, namelyp, of the random permutation fitness values are
at least as strong as the observed fitness. A low probability along with an intuitively high-
observed fitness value suggests that the observed data may have a core/periphery structure.

To illustrate this permutation test, we usedMathematica to program a random permuta-
tion generator based upon the observed within group distribution of messages for each of
the 12 groups fromTable 1. As with the observed data, diagonal cells were also ignored for
these permutations. For all 1000 random permutations for each group, we also obtained the
optimal core/periphery fitness values using our exhaustive search algorithm.

The results of three independent runs of this method for each group are shown inTable 3.
The threep-values for each group represent the proportion of permuted optimal fitness values
(out of 1000) that are equal to or greater than the observed fitness value. For group 1, for
example, no random permutation in each of the three runs produced an optimal fitness value
equal to or greater than the observed fitness value of 0.867 (seeTable 1). For group 3, 43 of
the random permutations in the first run produced optimal fitness values equal to or greater
than the observed fitness value (0.650). There are 44 such permutations in the second run,
and 41 permutations in the third run.

It is also useful to be able to inspect the distribution of permutation fitness values and
visually compare this with the observed fitness values. A standard way to do this is to plot a
cumulative distribution of permutation fitness values, ordered from lowest to highest, and to
place the observed fitness value where it falls in this distribution. This plot is shown for group
1 inFig. 1, and for group 7 inFig. 2of theBeck et al. (2003, submitted for publication)data.
Both figures contain the permutation fitness values from run 3 (Table 3). InFig. 1the optimal
fitness,f0 = 0.867, is well above all the fitness values for the random permutations of the
data, which range from 0.235, the leftmost value, to 0.801, the rightmost. All permutation
fitness values were found by exhaustive search, so we are confident that they are correct.

For comparative purposes, the best fitness value obtained usingUCINET is represented
in the plot by a horizontal line atfU. For group 1 the highest fitness thatUCINET could
find, fU = 0.570, crosses the random fitness curve at about the 80% level, as indicated in
Fig. 1. All 1000 of the fitness values for the random permutations are less than that of the



J.P. Boyd et al. / Social Networks 28 (2006) 165–178 173

Fig. 1. Fitness values of permutations of group 1 fromBeck et al. (2003, submitted for publication)data.

original data. This allows us to conclude that thep-value forf0 is less than 0.1%, and that
the core/periphery model is supported for group 1.

Fig. 2also plots fitness values fromBeck et al. (2003, submitted for publication)commu-
nication data, but this time for group 7. The optimal fitness isf0 = 0.565, while theUCINET
fitness,fU = 0.398, is again suboptimal. The first ranked position where the permutation
fitness values exceedf0 is at 830. This means that thep-value is 0.170, which is not signif-
icant at the conventional 5% level. We therefore conclude that the structure of the overall
communication data for group 7 is not consistent with a core/periphery model.

Ties in permutation fitness values are indicated in both figures by a vertical line with a
gap in the middle, and their low density, especially in the critical 95% range, indicates that
they will not be a problem in interpreting the results.Table 4shows the distribution of the
length of runs of ties from the third run ofTable 3for each of the 12 data sets. Note that the
maximum run length is five, again showing that long runs of identical fitness values is not
a problem.

Most of the permutation fitness ties inTable 4represent different cores that happen to
have the same fitness values. By the “same” fitness values, we mean that the values are the
same up to round-off error, corresponding to theMathematica option, SameTest→ Equal.

Fig. 2. Fitness values of permutations of group 7 fromBeck et al. (2003, submitted for publication)data.
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Table 4
The distribution of run length of permutation fitness values forBeck et al. (2003, submitted for publication)data

Group # 0 1 2 3 4 5

1 915 38 3 0 0 0
2 839 68 7 1 0 0
3 801 81 11 1 0 0
4 859 60 3 3 0 0
5 679 121 25 1 0 0
6 641 119 33 4 0 1
7 769 89 11 5 0 0
8 653 132 22 3 1 0
9 864 65 2 0 0 0

10 715 102 21 3 0 1
11 748 97 18 1 0 0
12 792 84 10 1 0 1

Total 9276 1058 169 27 6 9

To get the total run length fromTable 4, sum the product of thejth run-length by its
frequency in the totals row. Therefore, the total run-length of repeated fitness values is 1058
plus 169× 2, and so on, which equals 1476. However, 171 of the 1476 repeated fitness
value runs (of the 12,000 total random permutations) could be distinguished by the size
of the core, as determined from anotherMathematica calculation. In other words, 171 ties
could be broken by considering core length. Next, 1380 of these repeated fitness values
could be distinguished by considering the two ordered vectors of values in the permuted
core and periphery, respectively, leaving only 96 unbroken ties. For example, in the twelfth
data set, one of the pairs of vectors of randomized and then optimized core/periphery entries
was, after ordering (3,4,4,4,5,6) and (0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4). Another such
random permutation led to (2,4,4,4,6,6) and (0,0,0,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4). Note
that both of these structures had the same core length, viz., three. The reader can verify that
when these vectors are correlated with the image vector (six 1s followed by twenty 0s) the
result in both cases is 149/

√
53310≈ 0.64533. Finally, even the presence of these pairs

of identical permutation fitness values and their respective core/periphery vectors does not
indicate that the corresponding random permutations were identical, since there are many
permutations that give rise to the same core/periphery ordered vectors.

The reader should note that all the fitness values on the randomly permuted data in
both figures are positive. Since our fitness is just a correlation, restricted to a subset of
the matrix, one might expect that the average fitness would be zero. However, since we
select the core/periphery bipartition that maximizes fitness, this number is always positive.
This means that the usual interpretation of squared correlation as the “percent of variance
explained” does not apply here. Therefore, thep-value is the only guide we can give as to
whether a particular fitness is “large” or not.

Finally, Fig. 3plots a cumulative distribution of 1000 permutation fitness values for the
Baker (1992)journal citation data, in the asymmetric binary form fromBorgatti and Everett
(1999:385 Table 7). This plot is analogous to the plots forFigs. 1 and 2, but the ties are not
indicated. The most notable difference is that the fitness values from the Kernighan–Lin,
differential evolution, andUCINET are in agreement and are far greater than all the permuted
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Fig. 3. Fitness values of permutations of the asymmetric binaryBaker (1992)journal citation data.

values, although the running time for the former program was much faster. However, the
simulated annealing program gave suboptimal answers for this problem. The fact that the
fitness found by the Kernighan–Lin algorithm, 0.826, was so much higher than the maximum
value, 0.441, of the 1000 random permutations shows that the core/periphery structure may
be even more significant than is indicated by thep-value of less than 0.1%.

6. Discussion and conclusion

Our permutation test is very general in that it can detect any deviation from randomness in
the fitness measure. One might argue that we should have controlled for symmetry, marginal
totals, or other network variables. However, symmetry is not specified in the core/periphery
model, and it is conceptually hard to separate highly variable and correlated marginals from
the definition of a core/periphery structure. For instance, if the within core ties are dense,
while the within periphery ties are sparse, then both core marginals tend to be relatively large,
while both periphery marginals would be smaller. Not controlling for plausible variables
increases the danger of Type I errors (falsely rejecting the null hypothesis). One suspects
Type I errors when too many tests seem to be significant. It is true that we found that all of
the first fourBeck et al. (2003, submitted for publication)data sets had a highly significant
core/periphery structure, but of the remaining eight groups (Beck et al., submitted for
publication) three or four (groups 5, 7, 11, and possibly 8) are not significant at the 5%
level. This is in general agreement with the observations in their article. This suggests that
our test is powerful enough to detect core/periphery structures when they exist, but not so
generous as to allow almost anything to be a core/periphery structure.

However, it is easy to modify our permutation test for perfectly symmetric data: one
permutes and correlates only the upper diagonal entries. Of course, one could choose the
lower diagonal entries just as well. In fact, one could use any fixed random choice of one
entry from each pair,Aij andAji, for all unordered pairs{i, j}.

This last remark suggests how to control for a probabilistic symmetry bias, whereAij

andAji are not independent. The exact form of the dependence may be very complicated,
especially for valued data, but none of that matters with the following permutation scheme.
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Instead of permuting single entries,Ai,j �→ Aσ(i,j), determined by a diagonal-fixing permu-
tation σ of orderedpairs (i, j), one permutes symmetric pairs of entries, determined by
any permutationτ defined on the set of all unordered pairs{i, j} of vertices. Any such
permutation preserves the exact symmetry bias, expressed as the conditional probability,
P(Aji = y|Aij = x).

One could also propose similar ideas for bringing in the diagonal elements by using per-
mutations that permute both diagonal and off-diagonal elements, with the restriction that
diagonal elements are permuted among themselves, and the same for off-diagonal elements.
The fitness measure would also be a correlation, but this time extended to include the diag-
onal elements. However, the authors strongly believe that this extension would violate the
intuitive idea that the core/periphery model is exclusively about relations between different
elements, be they individuals or countries, not properties that these elements possess by
themselves.

Fitness measures other than the Pearson product moment correlation can, of course,
be used within the scheme of this paper. One merely substitutes the new fitness function
in the optimization program. Examples of alternative fitness measures would be a simple
matching coefficient, a chi-square measure, or a log-likelihood function. The matching
coefficient might improve the speed of the calculations, but it fails to control for the size
of the two groups. The latter two measures are likely to be highly correlated with the
correlation coefficient. Two of theUCINET options, Density (the density of the core block
interactions) and SXY (the element wise product of the permuted data matrix and an ideal
structure matrix consisting of ones in the core block interactions and zeros in the peripheral
block interactions) may also be correlated with the Pearson product moment correlation.
However, theUCINET option Emptyper (the number of entries in the peripheral block
interactions) may give quite different results.

A potential problem with permutation tests is found in highly skewed data, as shown by
Faust and Romney (1985)for network data with coefficients of skewnessγ1 over 2.8. The
skewness of the combinedBeck et al. (2003, submitted for publication)data (excluding
the undefined diagonal values) is 0.868. While this is statistically significant (9.2 standard
deviations on the positive side of 0), it is not as excessive as in theFaust and Romney study
(1985). If one attempts to correct our skewness by the widely used log(1 +x) transformation,
one “over-shoots” and the skewness is now negative, at−0.318. Using trial and error, we
found that the transformationx2/3 largely eliminates the skewness in theBeck et al. (2003,
submitted for publication)data at 0.049. However, it is difficult to justify, either theoretically
or substantively, such empirically derived transformations.

Although the Kernighan–Lin program was faster than the others considered here, it
could be greatly speeded up by several simple changes. The main improvement is that
the gain (or loss) of fitness resulting from switching the core/periphery membership of a
single point could be efficiently computed, instead of the easy, but slow, way it was actually
implemented: recomputing the fitness of the new structure from scratch and subtracting it
from the old fitness. This improvement would give the same proportional increase in speed
for the differential evolution and simulated annealing programs, as they had the same gain
function. Other improvements would involve reprogramming crucial parts of the algorithm
in C and linking these with the mainMathematica program. With these changes, much
larger data sets could be analyzed.
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The Beck et al. (2003, submitted for publication)data was ideally suited to explore
the algorithms considered here (UCINET, differential evolution, simulated annealing, and
Kernighan–Lin) because of the small size (twelve 8× 8 matrices) that allowed us to compare
them all with the gold-standard, exhaustive search.UCINET was found to give suboptimal
answers. As implemented inMathematica, the differential evolution algorithm gave correct
answers, but was slow. The Kernighan–Lin algorithm emerged as the best on both counts,
accuracy and speed, and has the potential to be useful in finding and testing core/periphery
structures.

Appendix A. A Kernighan–Lin algorithm for the core/periphery problem

The gain functiong(a), represents the fitness gain from movinga, one of then individuals,
from its current block (core or periphery) to the other block. The outer loop (Step 4) is
typically repeated only two or three times.

• Step 0: Pick a random core/periphery bipartition with at least individuals in each block.
• Step 1: Choose an individuala such thatg(a) is maximal (even if not positive).
• Step 2: Perform a “tentative” reassignment of a to the other block.
• Step 3: Repeat Steps 1 and 2 exactlyn times, where an individual cannot be chosen

to be reassigned (the “locking rule”), if she has already been reassigned in one of the
previous iterations of Steps 1 and 2, but within the current loop of Step 4. This sequence
of reassignments defines a sequence of gainsg1, . . ., gn wheregi corresponds to the
reassignment of individualai to the other block in theith iteration. The total gain after
k reassignments equalsG(k) = ∑k

i=1gi. N.b., fork = n, every individual has been reas-
signed to a different block, andG(n) =−f0, wheref0 is the fitness at the beginning of the
current Step 4 loop.

• Step 4: Choose the value ofk for whichG(k) is maximal. IfG(k) > 0, the local neighbor-
hood solution is given by the partition obtained from the initial partition by the “definite”
reassignment of (a1, . . ., ak) and Steps 1 through 4 are repeated (resetting the “locks”).
If G(k) ≤ 0, then we are done.
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