
Computation in undergraduate physics: The Lawrence approach

David M. Cook∗

Lawrence University, Department of Physics, Appleton, Wisconsin 54912

The physics program at Lawrence University has introduced sophisticated computational tech-
niques throughout its curriculum. Distinguishing features of the Lawrence approach include a focus
on flexible, general purpose computational packages, application to theory and experiment, extensive
use for preparing reports, and distribution throughout the curriculum. Most importantly, compu-
tation is introduced early enough so that students subsequently use computers independently on
their own initiative. A required sophomore course in computational mechanics provides a uniform
orientation to symbolic and numerical tools, and an elective junior/senior course in computational
physics is offered. Student use of computational resources in independent studies and summer re-
search experiences and positive comments from recent graduates provide evidence of the success and
value of these curricular inclusions.

I. INTRODUCTION

Computers have been used to support the teaching of
physics for at least four decades.1 Until recently most ap-
plications focused on introductory courses, in which stu-
dents typically supply parameters to instructor-written
programs or access web-based resources, although ele-
mentary programming is sometimes included.2 As valu-
able as these applications are, they should no longer con-
stitute the entire exposure of undergraduate physics ma-
jors to computation. Several recent surveys3 on the post-
graduation activities of undergraduate physics majors
support the conclusion that curricula must be modified
to assure that graduates are familiar with the capabili-
ties and limitations of a variety of tools, acquainted with
an assortment of standard algorithms applied in physi-
cal contexts, and skilled in using computers not only for
learning but also for doing physics.

Fortunately, attention is increasingly being paid to
computation in the entire physics curriculum. Numerous
texts focusing on computational physics4 and some aimed
at specific courses but with a computational component5

are available, though each of necessity picks a particular
software package, which constrains its adoption to con-
texts in which the chosen package is used. In the last
several years, a group now calling itself the Partnership
for Computing in Undergraduate Physics6 has embarked
on a systematic attempt to bring together those who have
been striving in isolation to bring computation into the
undergraduate curriculum at all levels.

Several different approaches to introducing computa-
tion beyond the introductory level have been explored.
Some7,8 have increased the flexibility and sophistica-
tion of canned programs, an approach that helps de-
velop physical intuition, but does less than is ultimately
needed to nurture the skills to create original computer-
based solutions. Some9 have added computational exer-
cises as modules in intermediate and advanced courses,
an approach that is complicated by the difficulty of
finding the time to provide instruction on the capabil-
ities of the tools. In particular, this approach risks fo-
cusing only on those resources needed for the specific

exercise so students do not acquire a broad apprecia-
tion of the versatility and scope of computational ap-
proaches. Others10 have introduced single, stand-alone
upper-level computational physics courses that provide
detailed background in computation, but have little im-
pact on the rest of the curriculum and typically are of-
fered late in the undergraduate program, so that students
do not encounter computational approaches early enough
for these approaches to become second-nature by gradu-
ation. Some11 have introduced majors in computational
physics or computational tracks within an otherwise tra-
ditional physics major. A few12 strive to embed comput-
ing throughout the curriculum.

At Lawrence University we have tried during the past
two decades to design a physics curriculum that, with-
out short-changing important topics from the historical
canon, includes opportunities to build skills in the appli-
cation of computation to numerous problems from sev-
eral areas of physics. This paper enumerates the under-
lying convictions that have guided our curricular devel-
opments, sets the context by discussing the structure of
the Lawrence curriculum and its computational compo-
nents, and then describes an intermediate course required
of all sophomore majors and an advanced elective course
available to juniors and seniors.13 Our hope is that those
who seek to incorporate computing into their curricula
but are uncertain about strategies will see aspects of the
Lawrence approach that can be applied or adapted to
their own circumstances.

II. UNDERLYING CONVICTIONS

Practicing physicists routinely do a variety of tasks
that support their activities but are peripheral to their
main objectives. The more important and frequent of
these tasks involve visualizing functions of one, two, and
three variables; solving algebraic equations and ordinary
and partial differential equations; evaluating integrals;
finding roots, eigenvalues, and eigenvectors; acquiring,
displaying graphically, and analyzing data; processing
images; and writing reports and papers. Increasingly,
computational approaches are used to complete these

2

tasks. To be able to invoke computational approaches
when appropriate, physicists must be acquainted with
at least one operating system, a versatile text editor,
a spreadsheet program, an array/number processor,14

a computer algebra system,15 a visualization tool,16 a
programming language that supports standard packages
and libraries, a program for circuit simulation,17 a pro-
gram for data acquisition,18 a technical publishing sys-
tem with the capability for easy inclusion of equations
and figures,19 a drawing program for creating publica-
tion quality figures,20 and a presentation program. The
curricula that train these physicists must include an ex-
posure to at least some of these approaches and tools.

Beyond the substance of the approaches introduced,
a curriculum that responds to these convictions must
ensure that students know about the hazards of finite-
precision floating-point arithmetic and other limitations
of computation. In brief, graduates should have the
ability to recognize when a computational approach has
merit, knowledge of an assortment of computational
tools, and the skill and confidence to exploit these tools
wisely and independently.

III. THE DEPARTMENTAL CONTEXT

The Department of Physics at Lawrence University,
a private, coeducational, liberal arts college and mu-
sic conservatory of 1400 students, has five full-time fac-
ulty members and annually graduates an average of ten
physics majors, 50% of whom go directly to graduate pro-
grams in physics or related areas. Each year, full-time
students at Lawrence take three six-unit (3-1/3 semester
hour) courses in each of three ten-week terms. Class pe-
riods are 70 minutes long.

The typical program of a physics major is shown in
Table I. The minimum major is satisfied by the fourteen
courses displayed in italics. Courses flagged with an as-
terisk direct students explicitly to the computer, and in
most cases include instruction in at least one computa-
tional resource. In all the courses, students are free and
are often encouraged to use those resources on their own
initiative. Most graduates will have chosen courses in
physics, mathematics, and computer science beyond the
minimum required for the major, and many will have
elected a senior capstone (research) project.

In the two decades since we adopted the goal of de-
signing a curriculum that reflects the convictions laid out
in Sec. II, we have equipped (and re-equipped) all labo-
ratories with appropriate hardware and software, revised
(and re-revised) our courses, and drafted (and re-drafted)
hundreds of pages of instructional materials, some of
which have been compiled into a book and an associated
solutions manual.21 Our curriculum now introduces first-
year students to on-line data acquisition, the statistical
analysis of data, and least squares fitting; introduces fall-
term sophomores to the simulation of electronic circuits
and computer-based preparation of laboratory reports in

Electronics, winter-term sophomores to symbolic, numer-
ical, and visualization tools in Computational Mechan-
ics, and spring-term sophomores to relaxation methods
for Laplace’s equation in Electromagnetic Theory ; rein-
forces techniques for visualization and the numerical and
symbolic solution of ordinary differential equations, eval-
uation of integrals, and finding eigenvalues and eigenvec-
tors in Quantum Mechanics; expands students’ exposure
to on-line data acquisition, techniques for data analysis
and curve fitting, and use of software for generating re-
ports in Advanced Laboratory ; offers juniors and seniors
Computational Physics; and incorporates computational
approaches alongside traditional approaches in many in-
termediate and advanced courses.

IV. THE FIRST YEAR

Prospective physics majors first encounter computa-
tional approaches in the introductory, calculus-based
courses, whose laboratory is equipped with Windows
computers, a monochrome laser printer, LabPro22 inter-
faces and several Vernier sensors, Spectrum Techniques
units23 for gathering data on radioactive counting rates,
and computer-controlled NanoSurf scanning tunneling
microscopes.24 Exercises assigned in the nine three-hour
laboratory sessions in each term routinely involve auto-
mated data acquisition in several experiments, statistical
data analysis in essentially all experiments, least squares
fitting of linear and parabolic functions in several ex-
periments, and creation and processing of images with
computer-controlled scanning tunneling microscopes. In
the lecture portion of the course, students occasionally
use the laboratory computers to plot theoretical results
or solve ordinary differential equations via Euler and im-
proved Euler methods.

V. THE SOPHOMORE YEAR

A serious introduction to “real” computation occurs in
the sophomore year in which majors take a sequence of
three required courses supported by the Computational
Physics Laboratory, which has nine workstations running
Linux, monochrome and color laser printers, and soft-
ware in nearly all the categories listed in Sec. II. Majors
have 24/7 access to the laboratory.

In Electronics fall-term sophomores construct and
study assorted analog and digital circuits. Early in the
course, students are introduced to Multisim,17 and use
this software to complete homework assignments and to
predict or interpret experimental results. Toward the end
of the term, each student writes a journal-quality article
on one of the experiments. Most use Word for the draft-
ing of this article but some have learned LATEX.19

In Computational Mechanics, which is the central
course in our effort to include computation into our cur-
riculum, winter-term sophomores are introduced to com-

3

Year Term I Term II Term III

1 First year studies First year studies elective

elective *Intro Classical Physics *Intro Modern Physics

Calculus I Calculus II Calculus III

2 *Electronics *Computational Mechanics *E & M

Diff Eq/Lin Alg elective elective

elective elective elective

3 *Quantum Physics elective *Advanced Lab

elective elective Physics elective

elective elective elective

4 Capstone Physics elective elective

elective elective elective

elective elective elective

TABLE I: Typical program of a physics major at Lawrence University. Courses in italics are required for a minimum major in
physics. Available physics electives include Thermal Physics, Optics, Advanced Mechanics, Advanced E & M, Mathematical
Methods of Physics, Advanced Modern Physics, Plasma Physics, Solid State Physics, Laser Physics, *Computational Physics,
Tutorials, Independent Studies, and Capstone Projects. Most of the physics electives are offered in alternate years.

putation in a course that devotes about 60% of the time
to traditional topics in intermediate classical mechanics
and about 40% of the time to computation. Because this
course is required of majors, instructors in subsequent
courses can confidently direct students to use computers
when appropriate. Students also use the computational
laboratory on their own initiative, even if individual fac-
ulty members do not make explicit assignments involving
those resources. A fuller description of this course is pre-
sented in Section VII.

In Electricity and Magnetism spring-term sophomores
experience an immediate reinforcement of some of the
topics addressed in Computational Mechanics. Although
the details and the extent of computer use depend on
the instructor, students use the Computational Physics
Laboratory for visualization of problem solutions done by
hand, use symbolic and numerical integration to evaluate
electrostatic potentials and electric and magnetic fields,
solve the Laplace equation using instructor-supplied tem-
plates written in IDL, and review numerical approaches
to trajectory problems.

VI. THE JUNIOR AND SENIOR YEARS

Subsequent theoretical and experimental courses offer
junior and senior majors many opportunities to continue
developing their computational skills and, depending on
the instructor, these courses direct students to the Com-
putational Physics Laboratory for an occasional exercise.
Even in the absence of specific computational assign-
ments, students routinely use visualization techniques on
their own initiative in many upper-level courses. Most se-
nior capstone projects exploit the resources of the Com-
putational Physics Laboratory, at least for visualiza-
tion and preparation of reports (most often with LATEX).
Some recent senior projects, notably those in fluid me-

chanics, musical acoustics, x-ray diffraction, multiphoton
quantum transitions, theoretical explorations of the con-
finement of non-neutral plasmas, and simulation of plan-
etary formation from dust clouds, have made extensive
use of these facilities.

Three upper-level courses make explicit use of the com-
puter. Quantum Mechanics is required of fall-term ju-
niors. Although the extent of computer use depends
on the instructor, students use the computer for visu-
alization of wave functions and scattering coefficients,
symbolic and numerical solutions of eigenvalue problems,
symbolic and numerical determination of the evolution of
Gaussian wave packets, and symbolic and numerical eval-
uation of matrix elements in the context of perturbation
theory, selection rules, and the Stark effect for higher
values of the principal quantum number than are usually
addressed by hand.

Juniors enrolled in the required Advanced Laboratory
find that their computational background supports their
efficient learning about new computational techniques
applicable to experiment. Most of the experiments ex-
ploit visualization software to examine and analyze the
acquired data, LATEX for preparing reports, and presenta-
tion software for talks. The laboratory is equipped with
an assortment of measuring instruments that can output
digital signals. Several experiments involve on-line acqui-
sition of data and ask students to interface the appara-
tus with a computer. Linear, polynomial, and non-linear
least squares fitting is required in many experiments. Oc-
casionally, students use simulations to support the com-
parison of theoretical predictions with experimental re-
sults. LabView18 is slowly finding its way into some of
the experiments.

Computational Physics is an elective course that fo-
cuses on the numerical solution of the wave, diffusion,
and Laplace equations and on the visualization of these
solutions (see Sec. VIII).

4

VII. COMPUTATIONAL MECHANICS

The main objective of Computational Mechanics,
which has Introductory Classical Physics and Differen-
tial Equations and Linear Algebra as prerequisites, is
the intertwining of a conventional analytical treatment
of intermediate mechanics with an introduction to sym-
bolic and numerical computation and to visualization.
Computational exercises are drawn mainly from classi-
cal mechanics, but also from classical electromagnetism
and quantum mechanics. To make time for the introduc-
tion of computational topics, Lagrangian mechanics and
rigid-body dynamics were moved from what had been a
traditional intermediate course in classical mechanics to
an already existing alternate-year, junior/senior elective
course on Advanced Mechanics.

The course begins with a tutorial on the workstations
in the Computational Physics Laboratory. In the first
week students also review and extend their introductory
studies of translational and rotational kinematics and dy-
namics, impulse, linear and angular momentum, work,
kinetic energy, moment of inertia, and forces. They spend
the second week in the Computational Physics Labora-
tory becoming acquainted with the general capabilities of
IDL,14 especially for array processing and for visualiza-
tion of scalar functions of one, two, and three variables,
and with Tgif20 for generating drawings. In the third
and fourth weeks, the course discusses the usual problems
in one-dimensional motion via standard analytic tech-
niques, and then extends the definition of potential en-
ergy and conservative forces to three dimensions. In the
fifth and sixth weeks students are introduced to LATEX
and spend several classes on the standard analytic ap-
proaches to the central force problem.

The remainder of the ten-week term includes an ori-
entation to Maple15 for symbolic solution of ordinary
differential equations (ODEs) and for evaluation of inte-
grals. Numerical algorithms for solving ODEs and evalu-
ating integrals are introduced, including their use in IDL.
Many of the problems already discussed analytically pro-
vide examples for this computational component, and ex-
amples involving non-linear and chaotic systems are also
studied.

VIII. COMPUTATIONAL PHYSICS

Computational Physics, the second computational
course, was introduced in the fall of 2004 after several
unsuccessful attempts to incorporate its topics as com-
ponents of other upper-level courses. This junior/senior
elective has Computational Mechanics as a prerequisite
and is an alternate-year offering. It emphasizes prob-
lems involving partial differential equations (PDEs) in
electromagnetic theory, fluid mechanics, heat transfer,
and quantum mechanics, and gives particular attention
to techniques for visualization of the solutions.

The course begins by orienting students, most of whom

have not taken a formal course in programming, to the el-
ements of programming, briefly in pseudocode and then
in Fortran (or C) and IDL. After spending one and
a half class periods deriving the standard second-order
PDEs of mathematical physics (wave equation, diffusion
equation, Laplace equation) and discussing the multitude
of physical contexts in which these equations appear, the
course introduces finite difference methods25 and applies
them to discretize the diffusion and wave equations in the
spatial coordinate(s) but not the temporal coordinate,
yielding a large set of ODEs to be solved simultaneously
subject to appropriate initial and boundary conditions.
Students review the ODE solvers studied in Computa-
tional Mechanics and then move to the Fortran solver
lsode,26 which gives them their first experience writ-
ing driving programs to invoke existing and well-tested
subroutines. They then discretize the Laplace equation,
yielding a possibly large set of algebraic equations to
be solved by an iterative approach, and modify an IDL,
Fortran, or C template to write programs to implement
the standard relaxation algorithm for different bound-
ary conditions. Students next learn about multigrid ap-
proaches and write driving programs to invoke existing
subroutines mud2sp and mud3sp from the Mudpack27

package of Fortran solvers for elliptic PDEs in two and
three dimensions. They then discretize the wave and dif-
fusion equations in all coordinates, and modify templates
or write their own IDL or Fortran (or C) programs to
problems with different initial and boundary conditions.
About 35% of the course is devoted to these topics.

The final topic of the course, to which about 30% of
the time is devoted, addresses finite element methods28

for solving PDEs. For simplicity, the approach is first
applied to ODEs. The development of the technique fo-
cuses on a general second-order, self-adjoint, linear, inho-
mogeneous equation. The overall strategy is given, and
templates for coding in Fortran, C, and IDL are given
for specific equations. Students then modify those tem-
plates to adapt them to other examples. The course then
spends two class periods describing how to use the com-
mercial programs, Marc (a venerable solver of PDEs by
finite element methods) and Mentat29 (a more contem-
porary GUI interface for defining problems, automeshing
the geometry, creating the input file for Marc, and ex-
amining the output produced by Marc.

Beyond the weekly written assignments (which stu-
dents document using LATEX), students complete two
medium-length projects, one using finite difference and
the other using finite element methods. At the end of
the term (35% of the course), each student completes a
final, longer project of his or her choice. For each of these
projects, students prepare an oral presentation (15 min-
utes for the first two projects; 25–30 minutes for the end-
of-term project) and also a paper. Projects have involved
solving Laplace’s equation for electrostatic potentials or
steady-state temperature distributions in various regu-
lar and irregular two-dimensional regions; finding nor-
mal modes of oscillation for two-dimensional membranes

5

of various shapes; solving the one-dimensional time-
dependent Schrödinger equation to find reflection and
transmission coefficients for a particle directed at a po-
tential barrier; exploring the stability of finite-difference
approaches to the wave and diffusion equations; and find-
ing electrostatic potentials in various three-dimensional
regions.

IX. SUMMARY AND EVALUATION

The Lawrence approach to incorporating computation
in the undergraduate physics curriculum involves instruc-
tion and exposure at all levels beginning in the first
year. Central to our approach is the inclusion of a fo-
cused introduction to numerical and symbolic computa-
tion and to visualization as a component of a required
sophomore course in intermediate mechanics. Thereafter,
students increase their computational skills, sometimes
through explicit assignments in later courses, including
an elective course in computational physics, and some-
times through their own personal initiative. By gradua-
tion, majors have become familiar with many important
computational techniques and with a variety of tools for
the implementation of those techniques. Further, they
have had practice using publishing packages and presen-
tation tools to communicate their work to a variety of
audiences.

Evidence of the value of the computational compo-
nents in our curriculum is largely anecdotal. Students
who learn in their sophomore year to use computational
resources continue to use those resources confidently and
comfortably on their own in later courses and partic-
ularly in independent studies and summer research ex-
periences (REUs) at Lawrence and elsewhere. Some of
these REUs have been intensively computational, includ-
ing simulation of planetary formation from dust clouds,
and fluid dynamics of upwelling along the Oregon coast;
others have used computation to analyze experimental
data. All have used presentation tools for required oral

reports. A recent student reports that his computational
background was a critical factor in the positive decision
on his application for a summer REU, especially because
he was applying for a position following his sophomore,
not his junior year. Students returning from REUs else-
where and graduates returning from their first few years
in graduate programs express gratitude for the introduc-
tion we have provided and contend that they are more
adept in these areas than many of their peers, who some-
times struggle to live up to the computational expecta-
tions of their programs. One student returning from an
REU reported that she was the only student in her re-
search group who was able to use LATEX in preparing
reports, which her supervisor required all of his students
(undergraduates and graduates alike) to use. Although
the platform and software we use at Lawrence are not al-
ways replicated at subsequent institutions, students find
that they can shift easily, because they need only learn
an alternative syntax.

Acknowledgments

The curricular developments described in this paper
have been supported by three grants from the National
Science Foundation, three from the W. M. Keck Foun-
dation, and one from the Research Corporation and by
Lawrence University. The author’s departmental col-
leagues, and especially John R. Brandenberger and the
late J. Bruce Brackenridge, have endured many conver-
sations and contributed many creative thoughts as the
curricular components have evolved. Approximately 200
students who have survived the courses in the past sev-
eral decades and two dozen students who have worked
as summer research assistants to the author have been
significant contributors to the entire enterprise. Finally,
thanks go to three anonymous reviewers and the editors
of the American Journal of Physics, whose thoughtful
criticisms have resulted in a more compact and more
valuable exposition.

∗ Electronic address: david.m.cook@lawrence.edu
1 The Physics Curriculum Workshop Conference on Com-

puters in Undergraduate Science Education sponsored
by the Commission on College Physics (CCP) and held
at Illinois Institute of Technology in August, 1970, was
among the first national gatherings of those who recog-
nized the potential of the new technology. A CCP publi-
cation, Computer-Oriented Physics Problems, edited by J.
W. Robson, and published in August 1971 emerged from
that conference as an early effort to provide modules for
incorporation into traditional courses. Alhough now dated,
pertinent publications include A. M. Bork, FORTRAN for
Physics (Addison-Wesley, Reading, MA, 1967), H. Peck-
ham, Computers, BASIC, and Physics (Addison-Wesley,
Reading, MA, 1971), R. Ehrlich, Physics and Computers
(Houghton-Mifflin, Boston, 1973), and J. Merrill, Using

Computers in Physics (Houghton-Mifflin, Boston, 1976).
2 See, for example, W. M. MacDonald, E. F. Redish, and J.

M. Wilson, “The M.U.P.P.E.T. manifesto,” Comput. Phys.
2 (4), 23–30 (1988); P. Laws, “Workshop physics: Replac-
ing lectures with real experience,” in The Conference on
Computers in Physics Instruction: Proceedings, edited by
E. F. Redish and J. Risley (Addison-Wesley, Reading, MA,
1990), pp. 22–32; M. L. DeJong, “Computers in introduc-
tory physics,” Comput. Phys. 5 (1), 12–15 (1991); W. G.
Harter, “Nothing going nowhere fast: Computer graphics
in physics courses,” Comput. Phys. 5 (5), 466–478 (1991);
P. Laws, “The role of computers in introductory physics
courses,” Comput. Phys. 5 (5), 552–xx (1991); J. M. Wil-
son, “Computer software has begun to change physics ed-
ucation,” Comput. Phys. 5 (6), 580–581 (1991); J. M. Wil-
son, E. F. Redish, and C. K. McDaniel, “The comprehen-

6

sive unified physics learning environment (CUPLE): Part I
– Background and Operation,” Comput. Phys. 6 (2), 202–
209 (1992), and “Part II – Materials,” Comput. Phys. 6
(3), 282–286 (1992); J. M. Wilson, “The CUPLE physics
studio,” Phys. Teach. 32 (9), 518–523 (1994); W. Christian
and M. Belloni, Physlets: Teaching Physics with Interac-
tive Curricular Material (Benjamin Cummings, San Fran-
cisco, 2000) and Physlet Physics: Interactive Illustrations,
Explorations, and Problems for Introductory Physics (Ben-
jamin Cummings, San Francisco, 2003); R. W. Chabay and
B. A. Sherwood, Matter & Interactions I: Modern Mechan-
ics (John Wiley & Sons, New York, 2007), 2nd ed., and
Matter & Interactions II: Electric and Magnetic Interac-
tions, (John Wiley & Sons, New York, 2007), 2nd ed.

3 See, for example, the American Institute of Physics re-
port on the 1998–99 Bachelor’s Plus Five Study (search
“Bachelor’s Plus Five” at <www.aip.org>), which doc-
uments that five to eight years after graduation, about
25% of those with a physics undergraduate degree and
no higher degree declare that they are employed in “soft-
ware.” Surely, the 30% who declare they are employed
in “science and lab” or “engineering” also use computa-
tional resources to some extent. In the same study, about
45% of the graduates rate “computer programming” as
“very important,” and only about 37% rate “physics prin-
ciples” and 33% rate “knowledge of physics” as “very im-
portant” job skills. For a review of several studies and
citations to the studies, see O. Yaşar and R. H. Lan-
dau, “Elements of computational science and engineer-
ing education,” SIAM Rev. 45 (4), 787–805 (2003), which
is available at <epubs.siam.org/SIREV/sirev_toc.html>.
The importance of incorporating computation in the un-
dergraduate physics curriculum is also discussed in N.
Chonacky and D. Winch, “Integrating computation into
undergraduate curricula: A vision and guidelines for future
development,” Am. J. Phys. 76 (***), ***–*** (2008).

4 (In this listing, when two publication dates appear, the
first is the date of publication of the first edition.) See,
for example, W. J. Thompson, Computing in Applied Sci-
ence (John Wiley & Sons, New York, 1984); H. Gould,
J. Tobochnik, and W. Christian, An Introduction to Com-
puter Simulation Methods (Addison-Wesley, Reading, MA,
1987; 2006), 3rd ed.; M. L. DeJong, Introduction to Com-
putational Physics (Addison-Wesley, Reading, MA, 1991);
A. Garcia, Numerical Methods for Physics (Prentice-Hall,
Upper Saddle River, NJ, 1994; 2000), 2nd ed.; P. L. De-
Vries, A First Course in Computational Physics (John
Wiley & Sons, New York, 1994); Consortium for Upper-
Level Physics Software (CUPS), edited by R. Ehrlich,
W. MacDonald, and M. Dworzecka (John Wiley & Sons,
New York, 1995) [This project yielded nine volumes writ-
ten by 29 authors for use in standard intermediate and
advanced courses on Electricity and Magnetism, Astro-
physics, Quantum Mechanics, Classical Mechanics, Nu-
clear and Particle Physics, Waves and Optics, Thermal
Physics, Modern Physics, Solid State Physics.]; N. Gior-
dano and H. Nakanishi, Computational Physics (Benjamin
Cummings, San Francisco, 1997; 2005), 2nd ed.; R. H. Lan-
dau and M. Páez, Computational Physics: Problem Solving
with Computers (John Wiley & Sons, New York, 1997);
R. H. Landau et al., A First Course in Scientific Com-
puting: Symbolic, Graphic and Numeric Modeling Using
Maple, Java, Mathematica and Fortran 90 (Princeton Uni-
versity Press, Princeton, NJ, 2005); A. Shiflet and G. Shi-

flet, Introduction to Computational Science: Modeling and
Simulation for the Sciences (Princeton University Press,
Princeton, NJ, 2006).

5 See, for example, P. B. Visscher, Fields and Electrody-
namics: A Computer-Compatible Approach (John Wiley
& Sons, New York, 1988); J. Feagin, Quantum Meth-
ods with Mathematica (Springer-Verlag, Berlin, 1994);
R. Greene, Classical Mechanics with MAPLE (Springer-
Verlag, Berlin, 1995; 2000), 2nd ed.; J. Hasbun, Clas-
sical Mechanics with MATLAB Applications (Jones and
Bartlett, Boston, 2008).

6 This project is described in detail in Ref. 3, Chonacky and
Winch.

7 The specific citations in this paragraph identify represen-
tative activities. The author does not claim to have cited
or to be aware of all contributors and apologizes to those
omitted. A more comprehensive listing can be found in
R. H. Landau. “Resource Letter CP-2: Computational
physics,” Am. J. Phys. 76 (***), ***–*** (2008). The
September/October 2006 issue of Computing in Science
and Engineering is on “Computation in Physics Courses.”
It includes the results of a national survey of uses of com-
puters in undergraduate physics, the texts of five invited
papers delivered at the Syracuse meeting of the AAPT in
the summer of 2006, and abstracts of the seventeen invited
posters at the same meeting.

8 See, for example, M. Belloni and W. Christian, “Physlets
for quantum mechanics,” Comput. Sci. Eng. 5 (1), 90–
97 (2003), and M. Belloni, W. Christian, and A. J. Cox,
Physlet Quantum Physics: An Interactive Introduction
(Benjamin Cummings, San Francisco, 2005).

9 See, for example, D. M. Cook, “Introducing computa-
tional tools in the upper-division undergraduate physics
curriculum,” Comput. Phys. 4 (2), 197–201 (1990); D. M.
Cook, “Computational exercises for the upper-division un-
dergraduate physics curriculum,” Comput. Phys. 4 (3),
308–313 (1990); K. R. Roos, “An incremental approach
to computational physics education,” Comput. Sci. Eng. 8
(5), 44–50 (2006).

10 An early course in computational physics was described by
W. J. Thompson in “Introducing computation to physics
students,” Comput. Phys. 2 (4), 14–20 (1988) and an un-
usual approach is described by R. H. Landau, H. Kowalik,
and M. J. Páez in “Web-enhanced undergraduate course
and book for computational physics,” Comput. Phys. 12
(3), 240–247 (1998), but such courses now exist at numer-
ous institutions. Some have been described in presenta-
tions at professional meetings (Ref. 7), but few have been
described in detail in the literature. In many cases, these
courses also play a role in full-blown computational majors
or computational tracks (Ref. 11).

11 Such an approach is in place at Oregon State Univer-
sity and Austin Peay State University. See R. H. Lan-
dau, “Computational physics for undergraduates: The
CPUG degree program at Oregon State University,” Com-
put. Sci. Eng. 6 (2), 68–75 (2004); R. H. Landau, “Com-
putational physics: A better model for physics education,”
Comput. Sci. Eng. 8 (5), 22–30 (2006); and J. R. Tay-
lor and B. A. King III, “Using computational methods to
reinvigorate an undergraduate physics curriculum,” Com-
put. Sci. Eng. 8 (5), 38–43 (2006). A survey of several
such programs is incorporated in Ref. 3, O. Yaşar and R.
H. Landau.

12 See, for example, R. F. Martin Jr., G. Skadron, and R. D.

7

Young, “Computers, physics and the undergraduate ex-
perience,” Comput. Phys. 5 (3), 302–310 (1991); D. M.
Cook, “Computers in the Lawrence physics curriculum:
Part I,” Comput. Phys. 11 (3), 240–245 (1997), and “Part
II,” Comput. Phys. 11 (4), 331–335 (1997); W. Christian,
“Developing a computer-rich physics curriculum at a lib-
eral arts college,” Comput. Phys. 11 (5), 436–441 (1997);
D. M. Cook, “Computation in undergraduate physics: The
Lawrence approach,” in Computational Science – ICCS,
edited by V. N. Alexandrov et al. (Springer Verlag, Berlin,
2001), Part 1, pp. 1074–1083; M. Johnston, “Implementing
curricular change,” Comput. Sci. Eng. 8 (5), 32–37 (2006);
J. R. Taylor and B. A. King III, Ref. 11.

13 An 82-page report titled “Computation in the Lawrence
physics curriculum,” which includes detailed syllabi for
the central courses, sample assignments and examinations,
and a description of the text used in these courses, is
deposited at EPAPS Document No. ***. This document
may be retrieved via the EPAPS homepage <www.aip.org/
pubservs/epaps.html> or from <ftp.aip.org> in the di-
rectory /epaps/. See the EPAPS homepage for more infor-
mation.

14 For example, IDL, ITT Industries, <www.ittvis.com> and
Matlab, The MathWorks, <www.mathworks.com>. Oc-
tave is available under a GNU General Public License,
<www.octave.org>.

15 For example, Maple, Waterloo Software, <www.

maplesoft.com> and Mathematica, Wolfram Research,
<www.wolfram.com>. Maxima, is available under a GNU
General Public License, <maxima.sourceforge.net>.

16 For example, Kaleidagraph, Synergy Software, www.

synergy.com, and/or IDL, Matlab, and Octave
(Ref. 14).

17 For example, Multisim, Electronics Workbench Corpora-
tion, <www.electronicsworkbench.com>; Spice is avail-
able at nominal cost (start at <www.berkeley.edu> and
search for Spice).

18 For example, LabView, National Instruments Corpora-
tion, <www.NI.com/labview>.

19 For example, LATEX is freely available for many platforms
via <www.tug.org>.

20 For example, Tgif, <bourbon.usc.edu/tgif>.
21 D. M. Cook, Computation and Problem Solving in Under-

graduate Physics (CPSUP) (Lawrence University Press,
Appleton, WI, 2004); D. M. Cook, Solutions to Selected
Exercises to accompany CPSUP (Lawrence University
Press, Appleton, WI, 2004). Contact the author for de-
tailed information.

22 The LabPro hardware and assorted sensors connect exter-
nally to a laboratory computer and, in conjunction with
the associated software, LoggerPro, provide facilities for
on-line data acquisition. Vernier Software and Technology,
<www.vernier.com>.

23 Spectrum Techniques, LLC, <www.spectrumtechniques.

com>.

24 NanoScience Instruments, <www.nanoscience.com>.
25 Finite difference methods involve overlaying a grid of

uniformly spaced nodes on the domain of the problem
and discretizing the PDE by using finite differences to
approximate the first and second partial derivatives of
the solution, for example, (∂u/∂x)i,j ≈ [u(xi+1, yj) −
u(xi−1, yj)]/(2 ∆x) for the first derivative at node (i, j).
If only the space variables are discretized, the PDE is re-
placed with a set of coupled ODEs to be solved for the ap-
proximate temporal behavior of the solution at each node.
If the time variable is also discretized (or if there is no
time variable), the PDE is replaced by a set of algebraic
equations for the solution at each node. See, for example,
G. E. Forsythe and W. R. Wasow, Finite-Difference Meth-
ods for Partial Differential Equations (John Wiley & Sons,
New York, 1960), which is available in a Dover reprint.

26 The subroutine lsode (the Livermore Solver for ODEs) is a
component of Odepack, which is a large package contain-
ing numerous Fortran solvers for ODEs. This package is
in the public domain. See <www.netlib.org/odepack>.

27 Mudpack is a package containing numerous Fortran
solvers for elliptic partial differential equations in two and
three dimensions. This package is in the public domain.
See <www.scd.ucar.edu/css/software/mudpack>.

28 Finite element methods involve overlaying a network of ar-
bitrarily positioned and not necessarily regularly spaced
nodes on the domain of the problem, connecting those
nodes to cover the domain with elements (lines in one
dimension, triangles or quadrilaterals in two dimensions,
tetrahedrons or bricks or other geometries in three dimen-
sions), selecting an approximating function for each ele-
ment, and determining the constants in those approximat-
ing functions so that (1) the difference between the ap-
proximating function and the actual solution throughout
each element is minimized by one of several criteria and
(2) continuity of the function and its first derivatives at
the boundaries between elements is assured. The method,
which replaces the PDE with a set of algebraic equations
for the solution at the nodes, is more complicated than fi-
nite difference methods, but is much more easily applied to
problems with irregular geometries. For more details see,
for example, J. E. Akin, Finite Element Analysis for Un-
dergraduates (Academic Press, London, 1986); D. S. Bur-
nett, Finite Element Analysis (Addison-Wesley, Reading,
MA, 1988); L. R. Ram-Mohan, S. Saigal, D. Dossa, and J.
Shertzer, “The finite-element method for energy eigenval-
ues of quantum mechanical systems,” Comput. Phys. 4(1),
50–59 (1990), and references therein.

29 Marc/Mentat is a pair of programs for setting up
and solving partial differential equations by finite ele-
ment techniques and can be leased from MSC Software,
<www.mscsoftware.com>. Another finite element package
is Femlab, <ecs.rutgers.edu/eitlab>, which is an add-
on to Matlab.

