
Classification of Groups of Order n ≤ 8

n=1: The trivial group 〈e〉 is the only group with 1 element.

n=2,3,5,7: These orders are prime, so Lagrange implies that any such group is
cyclic. By the classification of cyclic groups, there is only one group of
each order (up to isomorphism):

Z/2Z, Z/3Z, Z/5Z, Z/7Z.

n=4: Here are two groups of order 4:

Z/4Z and Z/2Z× Z/2Z

(the latter is called the “Klein-four group”). Note that these are not
isomorphic, since the first is cyclic, while every non-identity element
of the Klein-four has order 2. We will now show that any group of
order 4 is either cyclic (hence isomorphic to Z/4Z) or isomorphic to
the Klein-four.

So suppose G is a group of order 4. If G has an element of order 4,
then G is cyclic. Hence, we may assume that G has no element of order
4, and try to prove that G is isomorphic to the Klein-four group. Let’s
give some names to the elements of G:

G = {e, a, b, c}.

Lagrange says that the order of every group element must divide 4, so
by our assumption that G is not cyclic, we see that ord(a) = ord(b) =
ord(c) = 2. I claim that ab = c. Indeed, if ab = e, then a = b−1

contradicting the fact that b = b−1. Also, ab = a would imply that
b = e, while ab = b would imply that a = e. The same argument shows
that ba = c = ab, ca = b = ac and cb = a = bc. Using these relations,
it is a simple matter (DX) to check that f : G → Z/2Z × Z/2Z is an
isomorphism, where

f(e) = (0, 0) f(a) = (1, 0) f(b) = (0, 1) f(c) = (1, 1).

n=6: You will show for homework that every group of order 6 is isomorphic
to one of the following two groups:

Z/6Z or S3.
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n=8: Now let G be a group of order 8. If G has an element of order 8, then
G is cyclic, so G is isomorphic to

Z/8Z.

So assume that G has no element of order 8; by Lagrange, every non-
identity element of G has order 2 or 4.

Case 1: Suppose G has no element of order 4, so every nonidentity element
has order 2. In other words, every element of G is its own inverse.
This means that the function F : G → G defined by F (x) = x−1

is actually the identity function, hence an isomorphism. By a
previous homework problem, this implies that G is abelian. Let
a, b ∈ G be two distinct elements of order 2, and choose c ∈ G
distinct from e, a, b, ab. I claim that

G = {e, a, b, c, ab, ac, bc, abc}.

Indeed, these eight elements are distinct by cancelation in G. For
instance, if ab = bc, then ab = cb since G is abelian. But then
cancelation implies that a = c, contradicting our choice of c. Now
that we know the elements of G, we see (DX) that G can be
described via generators and relations as follows:

G =
〈
a, b, c | a2 = b2 = c2 = e, ab = ba, ac = ca, bc = cb

〉
.

Using this description, one can check (DX) that

f : G→ Z/2Z× Z/2Z× Z/2Z

is an isomorphism, where

f(a) = (1, 0, 0) f(b) = (0, 1, 0) f(c) = (0, 0, 1).

Case 2: Now suppose that a ∈ G has order 4. Define H := 〈a〉 =
{e, a, a2, a3}, the cyclic subgroup of G generated by a. If b is any
element of G−H, then Hb 6= H, since cosets are either equal or
disjoint. Hence, G = H ∪ Hb = {e, a, a2, a3, b, ab, a2b, a3b}. Note
that this is true for any choice of b 6∈ H. Furthermore, cancelation
implies that ba 6= b and ba 6∈ 〈a〉 since b 6∈ 〈a〉 (DX).
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Subcase 2a: Suppose that there exists an element b ∈ G−H of order 2. Then
I claim that ba 6= a2b. For if ba = a2b, then

ba2b = baab = a2bab = a2a2bb = a4b2 = ee = e.

But then
a = ea = b2a = bba = ba2b = e,

contradicting the fact that a has order 4.

Thus we see that there are two possibilities: either ba = ab or
ba = a3b.

Subsubcase 2ai: If ba = ab, then G is abelian (DX), and

f : G→ Z/4Z× Z/2Z

is an isomorphism, where

f(a) = (1, 0) f(b) = (0, 1).

Subsubcase 2aii: If ba = a3b, then I claim that G ∼= D4, where D4 is the group of
symmetries of a square. Recall (DX) that

D4 =
〈
r, f | r4 = e, fr = r3f

〉
,

where r stands for a counter-clockwise rotation of π
2

radians, and
f stands for the flip through the diagonal running from the lower
left corner to the upper right corner. Using this description, check
(DX) that sending a to r and b to f defines an isomorphism

G ∼= D4.

Subcase 2b: Now suppose that every element of G−H has order 4, and choose
one such element b. Then I claim that b2 = a2. Indeed, since b
has order 4, it follows (DX) that b2 must have order 2, so that
b2 ∈ H = 〈a〉. But since a has order 4, the only element of H with
order 2 is a2. Hence b2 = a2 as claimed.

Now I claim that G is non-abelian. For if ba = ab, then

(a3b)2 = a3ba3b = a6b2 = a2b2 = a2a2 = a4 = e,
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contradicting the fact that a3b has order 4. Also, we can’t have
ba = a2b, for if this were true then

ba = a2b = b2b = b3 =⇒ a = b2,

which is impossible since a has order 4 while b2 has order 2. Re-
calling from above that

G = H ∪Hb = {e, a, a2, a3, b, ab, a2b, a3b},

we see that the only remaining possibility is ba = a3b. We now
know enough relations to construct the multiplication table of G,
so

G =
〈
a, b | a4 = b4 = e, a2 = b2, ba = a3b

〉
=: Q.

This is a group that we haven’t met before, called the quaternion
group.

Looking back over our work, we see that up to isomorphism, there
are five groups of order 8 (the first three are abelian, the last two
non-abelian):

Z/8Z, Z/4Z× Z/2Z, Z/2Z× Z/2Z× Z/2Z, D4, Q.

4


