Answers to Problem Set 4

1a. Begin with $Y = 100^{*}K^{.3}L^{.7}$ and solve for the per worker form by dividing by L to yield $y = Y/L = 100^{*}K^{.3}L^{.7}/L = 100^{*}(K/L)^{.3}$ which $= 100^{*}k^{.3}$

b. Using Model 1G and substituting in the specifics given in this problem (n=0), the steady state values for y and k are as follows:

 $y = 100^{1.43} * [s/*]^{.43}$ $k = 100^{1.43} * [s/*]^{1.43}$ and $c = (1-s)^* 100^{1.43} * [s/*]^{.43}$

c. max y (by choosing s) = $*y/*s = -100^{1.43}*[s/*]^{.43} + (1-s)*(.43/*)*100^{1.43}*[s/*]^{-.57} = 0$ When we solved for s, we find that it equals 0.3.

d. The share of labor = $w^*L/Y = MPL^*L/Y$ in a competitive economy. The share of capital = rent*K/Y = MPK*K/Y MPL = .7*100* K^{.3}L^{..3} -- so labor's share = .7*100* K^{.3}L^{..3}*L/Y = .7 MPK = .3*100*K^{..7}L^{.7} -- so capital's share = .3*100*K^{..7}L^{..7}*K/Y = .3 Labor and Capital's share sum to 1.

2a. Here $y = k^{.5} * L^{.2}$ -- so y cannot be written solely in terms of k.

b. As above, we plug the values in and determine that Long run demand is given by y = (*/s)*k. Using this equation with the production function in 4a yields: $k = L^{.04} * (s/*)^2$ and $y = L^{.04} * (s/*)$ with $c = (1-s)*(s/*) L^{.04}$

c The optimal savings rate comes from maximizing c with respect to s. Taking the partial derivative and setting it to zero yields s = .5

d. The share of labor = w*L/Y = MPL*L/Y in a competitive economy. The share of capital = rent*K/Y = MPK*K/Y MPL = .7*K^{.5}L^{..3} -- so labor's share = .7*K^{.5}L^{..3}*L/Y = .7 MPK = .5*K^{..5}L^{..7} -- so capital's share = .5*K^{..5}L^{..7}*K/Y = .5

Labor and Capital's share sum to 1.2 or twenty percent greater than the amount of output generated. This is not feasible so competition in both factor markets cannot hold.

- 3. Technological progress can be introduced in three ways in the Solow Model
 - i) It can be independent of either capital or labor
 - ii) It can be embedded in the purchase of capital
 - iii) It can be tied to labor through growth in human capital

a. For the first option, growth in technology goes directly into growth in output 1 for 1. Growth in capital enters with a weight less than one to reflect diminishing returns (b < 1)

b. Given the Cobb-Douglas production function, effect of technological improvement depends on the exponent. For the basic model $Y = Tech^*K^bL^{1-b}$, growth is determined by

Y gr = Tech gr + b^{K} Gr + $(1-b)^{L}$ gr. For 0<0.5<b, the influence is in the order i,iii, ii. For 0.5 < b < 1, the order of influence would be i, ii, iii.

- 4a. Divide both sides of the production function by L to yield $Y/L = (K)^{1/3} L^{-1/3}$ which can be rewritten as $y = k^{1/3}$ (A) – long run supply.
 - b. We know from the model (equation 6) that capital growth must equal labor growth along the long run path. But we are given from the question that K grows at 2%, call it g; therefore, labor must also grow at g. Since capital growth is given by $s^*(y/k) \delta = g$, we can solve for y to yield $y = (g + \delta)^* k/s$ (B) long run demand

Now, we put our two equations (A and B) together to yield $y = (s/(g + \delta))^{.5}$ (C) In this case, that equals $(.1/(.02+.1)^{.5} = .913)$

- c. Since $y = (s/(g+\delta))^{.5}$ and $k = y^3$, $k = (s/(g+\delta))^{1.5}$ so the capital/ output ratio = $(s/(g+\delta))$ – is not a function of time
- d. From the production function, we find that output per laborer will grow at the following (1/3)*Kgr + (2/3)*Lgr Lgr = (1/3)*(.02) + (2/3)*(.02) .02 = 0%. Output, however, will grow at 2.0%, the same rate as capital and labor.
- e. Changes in the depreciation rate affect the denominator in C. If * doubles, y must fall. Since output = y*L and L is not a function of δ , it would fall by a similar percentage.