Model 5 – Dynamic Aggregate Demand – Aggregate Supply

Mankiw, Macroeconomics, Seventh Edition, Chapter 14

1. IS curve becomes: \(Y(t) = Y_p(t) - \alpha^*(r(t) - \rho) + \varepsilon(t) \) where \(\varepsilon \) is distributed normally

2. Fisher Equation: \(r(t) = i(t) - \pi^e(t,t+1) \)
 Where \(\pi^e(t,t+1) \) is expected inflation rate from \(t \) to \(t + 1 \)

3. Phillips Curve: \(\pi(t) = \pi^e(t-1,t) + \Phi^*(Y(t) - Y^p(t)) + \nu(t) \)

4. Inflation Expectations: \(\pi^e(t,t+1) = \pi(t-1,t) \) or \(\pi(t) \) – Naïve expectations

5. Monetary Policy Rule: \(i(t) = \pi(t) + \rho + \theta\pi^*(\pi(t) - \pi^*) + \theta_y^*(Y(t) - Y^p(t)) \)
 - If \(\theta_y = 0 \) then only inflation matters;
 - If \(\theta\pi = 0 \) then only output matters

Dynamic Aggregate Demand:
\[Y(t) = Y_p(t) - \left[\alpha^*\theta_y/(1 + \alpha^*\theta_y) \right] \pi^e(t) + \left[1/(1 + \alpha^*\theta_y) \right] \varepsilon(t) \]
with slope \(\Delta\pi/\Delta Y = -\frac{1 + \alpha^*\theta_y}{\alpha^*\theta\pi} \)

Dynamic Aggregate Supply:
\[\pi(t) = \pi^e(t-1,t) + \Phi^*(Y(t) - Y^p(t)) + \nu(t) \] where \(\pi^e(t-1,t) = \pi(t-1) \)
with slope \(\Delta\pi/\Delta Y = \Phi \)

Exogenous Variables: \(Y^p, \rho, \varepsilon(t), \nu(t), \pi(t)^* \)