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Abstract

A natural language parser is described that analyzes the syntactic structure of an input 
sentence in relation to a specified grammar and generates all possible syntax trees of the 
sentence, along with estimates of the probability of each being the correct parse. The 
grammar used is based on X-bar theory, and the parsing algorithm is a chart parse – a top-
down parser which uses dynamic programming for efficiency in cases where the grammar 
leads to ambiguities. The parser has a database of the frequency of application of each 
syntax rule in the grammar as well as a lexicon of known words and their lexical 
categories and frequency of use in each category. These are used in a probabilistic 
context-free grammar model to yield the likelihood judgments of the candidate parses and 
are updated by user feedback, leading to more accurate subsequent estimations.



Introduction

Approaches to natural language understanding have usually modeled language as having 
levels of structure corresponding to traditional levels of linguistic analysis. Thus, speech 
input undergoes acoustic and phonetic analysis, then phonological, morphological, 
syntactic, and finally semantic analysis. Each level in this schema imposes a layer of 
structure on the input with the goal of eventually arriving at a logical representation of 
the information it imparts. 

Natural language does not bend conveniently to these structural analyses, unfortunately. 
Ambiguity is prevalent at every level of analysis, and some ambiguity cannot even be 
resolved by a native speaker. When humans process language, structure and meaning are 
inferred using contextual information. The first problem this poses to computers is that, 
given a string of words, there are no hard and fast rules to govern the syntactic structure 
of that string. Information from the semantic level of analysis is required to disambiguate 
many grammatical ambiguities. Since, in other respects, semantic analysis takes place 
after syntactic analysis, this poses a problem for the level-by-level strategy, necessitating 
backtracking. 

Many recent trends in linguistics and natural language processing move away from the 
multi-level, structure-heavy approach in favor of methods based on statistical analysis 
and positional relationships. These ideas have been very productive, but there is still 
room for structural approaches. By combining them with the statistical and probabilistic 
strategies, structural analyses can be made flexible enough to deal with ambiguities. This 
paper examines an example of how this can be accomplished, applied specifically to the 
syntactic level of analysis: parsing.

Parsing is the logical first step to computer understanding of natural language text. Most 
approaches to determining the meaning of a natural language statement first analyze the 
syntactical structure of the statement. The syntactical analysis of a sentence contains the 
information of what roles the words in the sentence are playing as well as the phrase 
structure of the sentence – that is, what parts constitute the subject and predicate of the 
sentence and what the adjectives, adverbs, and prepositional phrases refer to. 

Unlike programming languages, which have relatively simple formal grammars, natural 
languages have not been successfully formalized, so modifications must be made to adapt 
traditional parsing algorithms to them. One major challenge is that natural language 
grammars frequently generate multiple possible parses for a single sentence. These are 
ambiguities that humans resolve through the application of a wealth of semantic and 
contextual knowledge that computers are not yet able to replicate. 

This project's goal was to develop a system to parse grammatical English sentences into 
phrase structures in a way that deals gracefully with ambiguity. The resulting parser first 
generates all possible phrase structures using the chart parser algorithm. It then uses a 
probabilistic grammar to assign each of these possibilities a likelihood measure, which is 



the estimated probability of that parse being the correct representation of the sentence. 
These measures are normalized probabilities of the incidence of each result based on the 
sentences that the system has seen in the past. Thus, as the parser is exposed to more 
sentences, it learns what are the most common and the least common grammatical 
constructions in the language, and therefore improves its judgments of ambiguous cases. 

Background

X-Bar Grammar

The output of a parser such as the one described here is a parse tree, a construct 
describing the phrase structure of the input sentence in relation to a specified grammar. 
The internal nodes of a parse tree represent non-terminal symbols in the grammar and the 
leaf nodes are the words of the input sentence. The grammar used in this parser is a 
context-free grammar based on X-bar theory. Although X-bar grammar grew out of the 
Chomskyan generative grammar tradition that frowns upon probabilistic methods 
(Russell & Norvig, 2003), it still has many features that are useful in computational 
analysis. It lends itself well to abstraction, as its rules are at most binary branching and 
are categorized in terms of a few abstract patterns. It also serves as the base framework 
for much work on describing syntactic phenomena such as agreement, pronoun reference, 
and structural transformations (Haegeman, 1994).

Figure 1: X-bar theory’s categorization of non-terminal symbols means that the syntax 
rules conform to a set of abstract patterns. On the right is a generic XP schema.
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There are a few types of non-terminal symbols in an X-bar grammar. First, there are 
lexical category symbols, which represent the grammatical functions of words, such as 
noun, verb, preposition, etc. These are always the parent nodes of the terminal symbols – 
the words themselves – in the parse tree. For each lexical category symbol X, there is an 
X-phrase symbol, XP, which represents a phrase headed by a word of category X. The 
motivation for grouping words in this way arises from the perception that an XP fills the 
same role in a sentence that a single X fills; often, an entire phrase can be replaced by a 
single word without changing the essence of the sentence, whereas this cannot be done 
with groups of consecutive words that do not make up phrases. For example, in the 
sentence, “The computer with the file crashed,” the subject is the noun phrase “the 
computer with the file” and can be replaced by a pronoun to make the sentence “It 
crashed.”

X-bar theory postulates another type of non-terminal symbol, usually written X'  and 
pronounced ‘X-bar’. One or more of these symbols comes between an X node and its 
corresponding XP node; they provide branching locations for complements and adjuncts 
to X – words or phrases that support or modify X. Since both of these are optional, X' 
nodes often have only a single child node.

Figure 2: On the left is a small, incomplete X-bar grammar. On the right is a sentence and 
its parse tree according to this grammar. The root symbol of the sentence, ‘S’, is not 

technically a proper X-bar symbol, but it is used here for simplicity.
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Chart Parser

The algorithm used to find the parse trees is a top-down chart parser, a search algorithm 
that uses dynamic programming techniques. Chart parsers are commonly used in natural 
language processing because they deal efficiently with ambiguous grammars, which can 
be combinatorially problematic (Russell & Norvig, 2003; Allen, 1995). This algorithm 
uses a data structure called a chart to store partial parses, which are parse trees of 
substrings of the input sentence. It builds up the set of all partial parses by extending and 
combining them as it processes the words of the sentence one at a time. The variant 
described here is adapted from Russell & Norvig (2003) and is similar to the Earley 
parser (Earley, 1970).

For an n-word sentence, the chart is a multigraph with n+1 vertices, where a partial parse 
of the ith to jth words would be associated with an edge from vertex i to vertex j+1. This 
edge is added to the chart during the processing of the jth word by one of three methods: 
PREDICTOR, SCANNER, and EXTENDER. Figures 3-5 show how these methods would 
produce edges when parsing the example sentence from Figure 2. When an edge is added 
for a partial parse tree with a non-terminal symbol X as a leaf node, the PREDICTOR 
method adds a new edge for each rule in the grammar for X, representing the possible 
branchings that could extend the tree (Figure 3). For each word w, the SCANNER method 
extends the edges with partial parse trees that need a word at this position of a lexical 
category that w  belongs to (Figure 4). When an edge is added for a complete parse of 
some phrase Y that spans words i through j, the EXTENDER method combines it with any 
edges ending at i  that were lacking a Y subtree; this adds a new edge that spans the 
combined spans of the edges that produce it (Figure 5). If the grammar admits a parse 
tree for the entire sentence, the algorithm succeeds by producing an edge from the first 
vertex to the last vertex that corresponds to a parse tree with the start symbol of the 
grammar as the root node and the words of the sentence as the only leaf nodes.
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Figure 3: An edge added by the PREDICTOR method. The box indicates the next branch to 
be extended or specified.
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Figure 4: An edge added by the SCANNER method. Note: not all edges that would be in the 
chart at this point in the algorithm are shown.
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Figure 5: An edge added by the EXTENDER method. Note that the edges and partial parse 
trees shown on the left remain in the chart and can extend other edges – they are omitted 

on the right for clarity.



Probabilistic Context-Free Grammar

The statistical learning feature of the system uses a form of probabilistic context-free 
grammar, a model of syntactic structure that is more conducive to learning and more 
robust in ambiguous cases (Manning & Shütze, 1999). In a PCFG, every syntax rule – 
including those that attach words to lexical categories – has a probability associated with 
it. For each non-terminal symbol X, the rules in the grammar of the form X –> Y Z 
partition the set of possibilities for the structure of an X component. Thus, the 
normalization constraint dictates that the probabilities of the rules in this set sum to one.  

The probability of a given complete parse tree is simply the product of the individual 
probabilities of each node in the tree. This probability can be understood as production 
probability; if the PCFG is used to generate a legal sentence by starting with the symbol 
‘S’ and recursively replacing each non-terminal symbol with one of the relevant rules 
(chosen randomly using the given probability distribution), the probability of arriving at 
some sentence is the product of the probabilities of each rule choice.

The Parser

The PCFG technique is used in this parser not for making the parsing itself more efficient 
or flexible, but rather as a means by which to store and use information about the 
grammar that is collected over many applications of the parser, and hence provide a more 
accurate evaluation of future input. The parser is able to produce more than a list of the 
possible parse trees for an input sentence; it also judges their relative grammatical 
acceptability. This does not take semantic information into account, as this is solely the 
syntactic level of analysis. In theory, the output from the parser could be passed on to a 
semantic processor, which could use the parser’s evaluations as a starting point and 
update the likelihood measures based on semantic information. 

The system uses a database for knowledge persistence. When an input sentence is entered 
into the parser, each word is looked up in a database of all words known to the system 
and their possible lexical categories (e.g. noun, verb, etc.). For each word/category pair, 
the lexicon database has a count of how many times the word has been observed in that 
category. The count of each category is divided by the sum of the counts of all categories 
for that word – this yields the probability that the word exemplifies that category. This 
implementation of probability inference is crude but effective. 

The chart parser algorithm is then used to generate all the possible parses of the input 
sentence, using a fully-specified X-bar grammar. This algorithm is efficient in most 
situations, but, due to the tree structures of the generated parses, there is a possibility of 
an exponential number of results. Fortunately, such sentences are not common in actual 
usage.



In addition to word category counts, the occurrence frequency of each grammar rule that 
is used in the candidate parses is selected from the database, which keeps a count of past 
appearances of each grammar rule. These counts are converted to probabilities in the 
same way as are the word/category counts. The number of times a certain nonterminal 
symbol has been observed to be rewritten by each rule is divided by the sum of the counts 
of all rewrites of that rule, effectively yielding the probability of that syntax tree node 
appearing in that environment.

After generating all the probabilities of the components of the parses, they are multiplied 
as is typical in the use of probabilistic context-free grammars, resulting in occurrence 
probabilities of each of the possible parse trees. These are then normalized against each 
other, representing the assumption that the correct parse is among the possible parses 
generated by the chart parser, and these can be compared as measures of their relative 
strength as solutions. 

Figure 6 shows an example of the parser’s analysis of a sentence with multiple parses. It 
portrays a hypothetical state of its database after having seen 30 input sentences. Via the 
ratio of the PCFG probabilities of the parse trees, the parser assigns a 90% probability to 
the solution on the left and a 10% probability to the solution on the right (under the 
assumption that one of them is the intended interpretation). 

The user can then indicate which result was the intended structure, which will increment 
the occurrence counts in the database for the rules and lexical category assignments used 
in that parse. If the same input is fed to the parser a second time, it will favor the correct 
one slightly more than it did previously. Over time, the system learns what structures are 
most used in the language, and hence makes better guesses in ambiguous situations. 

In practice, this has produced some positive results; the parser is often able to distinguish 
between the obvious, straightforward parse of a sentence and an anomalous result 
brought about by a grammar rule that exists to deal with some rare construction. For 
example, it favors the correct interpretation of the sentence “I can code” over the 
interpretation that implies “I put code into cans” by a 99.3% to 0.7% margin. Still, there 
are some instances where the incorrect parse scores higher, usually because determining 
the correct interpretation requires semantic information.

It is important to note that although the input is only being analyzed on the basis of 
syntactic structure, the way the system favors some rules over others is, to a degree, 
based on semantic information learned from human agents via its feedback system. 
Furthermore, it is being trained only on the dialect and sentence domain of the input it 
receives, which could make it inappropriate for input from a novel source.



rules� � � �   frequencies�   probabilities

S� NP   VP � �   30 � �   1.0

NP�   DET  N'  |  N'� �   20  |  15 �   0.57  |  0.43
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Figure 6: A rule for compound nouns has been added to the grammar, producing multiple 
parses for the example sentence. The table above shows a hypothetical state of the 

database after it has seen 30 input sentences. The nodes in the parse trees are marked with 
their individual probabilities and the tree probability calculations are shown below.



Conclusion

Without semantic and contextual knowledge, consistently determining the correct 
syntactic interpretation of a sentence is not possible. However, the strategy of generating 
multiple candidate interpretations and providing as much information as possible about 
the syntactic feasibility of each holds the promise of providing an advantageous starting 
point for semantic and logical analysis without necessitating backtracking to the syntactic 
analysis stage. In any case, the complete understanding of natural language – while 
currently an unsolved problem – has inspired much beneficial research. 
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