
The Evolution of CIRCA, a Theory-Based AI Architecture with Real-Time
Performance Guarantees

David J. Musliner, Michael J. S. Pelican
Honeywell Laboratories

{david.musliner,mike.pelican}@honeywell.com

Robert P. Goldman
SIFT, LLC

rpgoldman@sift.info

Kurt D. Krebsbach
Lawrence University

kurt.krebsbach@lawrence.edu

Edmund H. Durfee
University of Michigan

durfee@umich.edu

Abstract

This paper summarizes the evolution of our research
on the Cooperative Intelligent Real-Time Control Archi-
tecture (CIRCA), one of the first AI architectures de-
signed specifically for hard-real-time environments and
architecturally-enforced performance guarantees. Beginning
with the objective of providing reliable real-time execution of
automatically-generated plans, CIRCA research progressed
to define a rigorous link between planning models, execution
semantics, and performance guarantees. Formal verification
techniques and automatic abstraction methods were then in-
corporated to improve the rigor and performance of the plan-
ning system. Multi-agent negotiation and coordination capa-
bilities were developed to demonstrate performance guaran-
tees spanning distributed CIRCA agents. As the limitations
of CIRCA’s fully-guaranteed semantics became clear, the re-
search grew to include probabilistic versions of the problem
and new solution methods. Versions of CIRCA are capable
of reasoning about durative concurrent actions, exogenous
events and adversaries, nondeterministic actions, and prob-
abilistic actions and events.

Introduction
This paper provides a brief overview of the research to

date that has focused on CIRCA, the Cooperative Intelli-

gent Real-Time Control Architecture. CIRCA is one of the

first fully-implemented AI planning and execution architec-

tures that supports hard real-time performance guarantees.

CIRCA research has explored a broad spectrum of related

areas including reliable plan execution semantics, adversar-

ial reasoning, heuristic search guidance, the link between

formal verification and planning, meta-control of deliber-

ation in time-constrained domains, probabilistic planning,

and multi-agent planning and coordination. In this paper

we show how these topics tie together and relate to the gen-

eral problem of building embeddable intelligent systems that

provide formal, provable properties while retaining the com-

plex, unpredictable elements of state of the art intelligent

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

planning and scheduling algorithms.

CIRCA’s performance guarantees are constructed and en-

forced by components that are based on an underlying theory

of reactive plan execution; the theory describes how planned

reactions interact with an external world (including external

sources of change). The CIRCA executive is carefully de-

signed and implemented to enforce the semantics of the plan

execution theory. Most of the CIRCA capabilities described

in this paper are still active and available in the current code-

base, so we describe them in the present tense, even though

some were developed more than 15 years ago.

Classic CIRCA

In the beginning, we were mainly interested in automatically

building real-time control plans to control things like robots

in dangerous and adversarial environments. The key aspect

of such domains is the potential for catastrophic failure—

if the controlled agent (e.g., a UAV) does not respond to

some threat (e.g., a surface-to-air missile launch) within a

certain time limit, then it risks failing completely. So “Clas-

sic” CIRCA is designed to reason about such domains and

automatically build and execute reactions that defeat such

threats (Musliner, Durfee, & Shin 1993; 1995).

CIRCA Architecture

CIRCA is an autonomous, self-adaptive control architec-

ture designed specifically for mission-critical domains. As

illustrated in Figure 2, CIRCA combines on-line planning

and scheduling systems in its AI Subsystem (AIS) with a

very simple, very predictable real-time plan executive (the

Real-Time Subsystem, or RTS). CIRCA dynamically cre-

ates time-constrained reactive control plans (cyclic loops of

Test-Action Pairs, or TAPs) based on its expectations about

future world states and its own potential actions.



Non-Deterministic Probabilistic

Planning Reactions:

Formal Verification:
Kronos verifier interface

CIRCA-Specific Verifier

Dynamic Abstraction

Relaxed-plan heuristics GA TAP generation

Sampling-based verification

Trace-directed backjumping

Tempastic

1990 2000 2005

CIRCADIA

Meta-control

Real-time preemption model

Figure 1: For over 15 years, CIRCA research has explored numerous topics related to real-time intelligent control based on
theoretically-grounded performance guarantees.

Scheduler

selected
reactions

reaction
schedules

Mission Planner

World Model

AI Subsystem

State-Space Planner

planningplanning
feedback problems

reaction schedules

feedback data

sensor data

Environment

control
signals

Real-Time Subsystem

Figure 2: The CIRCA architecture combines intelligent
planning and adaptation with real-time perfor-
mance guarantees.

The RTS is responsible for executing TAP plans in a com-

pletely predictable fashion, so that their execution matches

the model used by the AIS. The RTS meets this criterion for

TAP execution because it has no other function; it simply

loops over the cyclic schedule of TAPs, testing and execut-

ing them repeatedly. Even communication into and out of

the RTS is encapsulated within TAPs, so that all RTS activ-

ity is scheduled explicitly.

The Planner and Scheduler, on the other hand, perform the

complex, unpredictable reasoning required to develop guar-

anteed control plans, and the performance of these subsys-

tems must not interfere with the RTS’ predictable execution.

To achieve this isolation, each control plan executed on the

RTS is designed both to achieve system goals and to ensure

system safety throughout the range of environmental states

that are anticipated during and after the accomplishment of

the goals. So the RTS keeps the system safe while the Plan-

ner and Scheduler try to build the next control plan; the plan-

ning operation isnot constrained to meet domain deadlines.

#<TAP 2>
Tests: (AND (IRU1 BROKEN)

(OR (AND (ACTIVE_IRU NONE) (IRU2 ON))
(AND (ACTIVE_IRU IRU1) (ENGINE ON))))

Action: select_IRU2
Max-delay: 2 seconds

TAP 2 TAP 1 TAP 3 TAP 1TAP 1 TAP 4

Figure 3: A sample Test-Action Pair and TAP schedule
loop from a sample domain controlling redun-
dant spacecraft inertial reference units (IRUs).

CIRCA Theory

The full details of the underlying CIRCA theory and execu-

tive design are beyond the scope of this paper, but are avail-

able in several other publications. An intuitive treatment

of the theory and executive design is available in (Musliner

1993), while (Goldman, Musliner, & Pelican 2002) provides

a more formal description in terms of timed automata. Here

we briefly overview the theory underlying CIRCA’s perfor-

mance guarantees, to set the context for describing the ar-

chitectural evolution.

Unlike most planning and scheduling systems that build

plans as linear or partially-ordered action sequences, CIRCA

builds plans that are actually reactivecontrollers, designed

to sense and react to different world states (situations) within

strictly-enforced time bounds. Each TAP has a boolean test

expression that distinguishes between states where a particu-

lar action is and is not to be executed, and a timing constraint

specifying the maximum time allowable between TAP exe-

cutions. In this context, a “state” is a particular assignment

of values to features or variables that describe the world and

which can be sensed by the CIRCA-controlled agent. A

sample TAP and an associated TAP schedule loop are shown

in Figure 3. When executing a TAP, the RTS evaluates the



test expression and, if it returns true, the RTS executes the

corresponding action. CIRCA’s Scheduler module uses the

TAP timing requirements when it builds looping TAP sched-

ules.

The world model and planning algorithm that the AIS

uses to develop TAP plans are detailed in (Musliner, Dur-

fee, & Shin 1995). For our purposes, it is sufficient to un-

derstand that the model is a modified state/transition graph

in which states correspond to complete descriptions of the

world (modulo some level of abstraction), and three types of

transitions represent the ways the world can change.Tem-

poral transitionsrepresent time and ongoing processes. The

timing behavior of a temporal transition is related to the rate

of the process it represents: for example, the process of acti-

vating a spacecraft’s inertial reference unit may take some

minimum amount of time to complete.Event transitions

represent occurrences outside the agent’s control, whileac-

tion transitionsrepresent the intentional actions that can be

taken by TAPs. Transitions have precondition and postcon-

dition expressions that describe how they can link together

states in the planned world model. CIRCA can control the

timing behavior of action transitions by setting the timing

constraints of the TAPs it builds.

To build plans, CIRCA begins with a set of goal descrip-

tions, a set of initial world states, and a set of transition de-

scriptions that detail the types of events, actions, and pro-

cesses possible in the world. Some of the transitions are

identified as leading to a distinguished failure state, and

CIRCA must build a TAP plan that makes failure unreach-

able while also doing its best to achieve the other goal con-

ditions. The basic planning algorithm conducts a fairly stan-

dard type of heuristically-guided forward search with back-

tracking, expanding the set of reachable states by applying

the uncontrollable temporal and event transitions and decid-

ing on an action choice for each state. An action can be

planned topreemptundesirable transitions (e.g., temporal

transitions to failure) by constraining the action to execute

quickly enough to definitely occur before the undesirable

transition could possibly occur. This notion of preemptionis

the core aspect of CIRCA planning that allows the system to

reason about real-time performance guarantees and system

safety.

World Model

Several key aspects of this real-time planning and con-

trol problem distinguish Classic CIRCA from most AI sys-

tems1, including:

• Exogenous Events —Unlike most planning systems,

CIRCA considers exogenous sources of change in its en-

vironment, including adversaries. Because the focus is on

making real-time safety guarantees, all exogenous processes

and events are assumed to possibly happen at any time they

could— in fact, the system takes Murphy’s Law to the ex-

treme, expecting that anything bad thatcanhappenwill hap-

pen, at the worst possible time.

• Time and Preemption — CIRCA tries to build plans

that prevent failures through one primary mechanism: dis-

abling the preconditions that allow an adversary (or the envi-

ronment) to cause a failure. In addition to handling the log-

ical elements of this sort of planning, CIRCA also must en-

sure that its safety-preserving actions will be taken quickly

enough. In other words, CIRCA has to ensure that the right

action is taken at the right time, and this timing may be

dictated in part by consideration of the uncontrollable envi-

ronment/adversaries. Unlike most temporal planning mod-

els, CIRCA does not label state with specific times; instead,

it uses a purely relative (and non-Markov) temporal model

that allows the system to compactly represent continuously-

executing control loops (e.g., as long as you’re flying, any

time someone shoots a radar-guided missile at your, deploy

chaff and begin evasive maneuvers).

• Nondeterministic Actions — CIRCA’s action models

can be nondeterministic, having multiple sets of postcondi-

tions. For example, the model of astart-engine action

may either result in the engine being started or not. Com-

bining the unique CIRCA temporal model with the notion of

indexical-functional variables (Agre & Chapman 1987) and

nondeterministic actions allows CIRCA to efficiently reason

about looping plans (reactive controllers) without overly-

precise models of system dynamics (e.g., to hammer in a

nail, keep hitting it until it is flush) (Musliner 1994b).

• Continuous Embedded Operation — CIRCA is also

designed to persist through changing missions that cannot be

entirely pre-planned, so planning and execution occur con-

currently and new plans need to be sent down to the RTS

and begin execution without sacrificing the system’s safety

guarantees. Thus CIRCA can reason explicitly about the

safe transfer of control between two different reactive con-

trollers, implemented by different TAP schedules.

1See (Muslineret al. 1995) for an overview of Real-Time AI
approaches.



Formal Verification

CIRCA’s world model is non-Markovian in the sense that

the abstracted temporal model means that the path of tran-

sitions followed to reach a state can affect which transitions

are possible out of that state, because of delays. For ex-

ample, preempting a temporal transition to failure from one

state may not disable that failure transition, but instead lead

to a new state where it is still applicable; in this case the pro-

cess represented by that temporal transition will have contin-

ued to run, so the safe time remaining in the new state is re-

duced. Naturally, this complicates the process of reasoning

about the temporal model, and motivates our use of formal

model checking to verify the required preemption proper-

ties that are necessary to ensure that a plan is guaranteed to

avoid failure and keep the system safe (Musliner, Goldman,

& Pelican 2000).

Each time the CIRCA SSP makes a heuristic decision

about what action should be taken in a state, it uses a ver-

ifier to confirm that failure is not reachable and that all the

planned preemptions will occur as expected. This means

that the verifier will be invoked before the plan (controller)

is complete. At such points we use the verifier as a con-

servative heuristic by treating all unplanned states as if they

are “safe havens.” Unplanned states are treated as absorbing

states of the system, and any verification traces that enter

these states are regarded as successful. Note that this pro-

cess converges to a sound and complete verification when

the controller synthesis process is complete.

Incremental Verification: Our earliest efforts to incor-

porate model checking verifiers used off-the-shelf systems

such as Kronos (Yovine 1998). However, because those

systems are designed for batch verification of system de-

signs, they are tremendously inefficient when used in the

inner loop of the CIRCA planning engine, completely re-

building their verification traces as each new action decision

was made. Therefore, we implemented a CIRCA-Specific

Verifier (CSV) that takes advantage of several key aspects

of the CIRCA planning problem and is fully incremental.

The CSV system can be orders of magnitude faster than the

Kronos-based approach, without sacrificing verification ac-

curacy or precision (in fact, the CSV has a more accurate

model of the executive’s behavior than the atrophied Kronos

interface).

Trace-Directed Backjumping: When the verifier finds

that the distinguished failure state is reachable, it can re-

turn a trace illustrating a path to failure. By mapping this

failure trace onto the search stack choice points, CIRCA can

pinpoint the decisions that are responsible for failure, and

backjumpto revise the most recent implicated decision. This

backjumping avoids revisiting more-recent but irrelevantde-

cisions, and can considerably improve the efficiency of the

searchwithout sacrificing completeness.

Heuristic Search

Despite its temporal abstractions and other advantages, the

CIRCA state space is highly exponential and explodes

quickly. Our efforts to manage this complexity have resulted

in several research contributions:

• Plan Graphs for non-Closed-World Models — As

with all state-space searches, heuristic guidance is critical.

Fortunately, the early work on plan-graph (or “relaxed

plan”) heuristics occurred just as CIRCA matured. Based

on McDermott’s original work (McDermott 1999), we

developed our own planning graph heuristic that combined

the now-standard relaxation/abstraction elements (e.g., ig-

noring negative interactions) with CIRCA-specific elements

including nondeterministic outcomes and exogenous events.

• Dynamic Abstraction Planning (DAP) — The intuition

behind DAP is simple: in some situations, certain world fea-

tures are important, while in other situations those same fea-

tures are not important (Goldmanet al. 1997). By represent-

ing only the important features, DAP allows CIRCA to avoid

enumerating many unique but functionally-equivalentstates.

DAP begins with a maximally abstract world model (only

distinguishing failure and non-failure states) and incremen-

tally adds more information to a state’s representation when

necessary to improve the plan. By automatically selecting

the appropriate level of abstraction at each step during the

planning process, DAP can significantly reduce the size of

the search space.

• Bad Smell — Even with backjumping, the SSP might

waste time repeatedly attempting to find a solution for

“failed” states. Note that, because CIRCA’s state space

model has non-Markov temporal semantics, the action

choices (including reaction timing) that may occur before

a failed state can be the cause of an anticipated failure, and

it may be possible to revise those earlier action decisions in

a way that makes a “failed” state no longer a failure. So

these states should not be completely eliminated from the



search for a good plan. For this reason, we wanted to con-

trol the SSP search so that it would try to avoid states that

had previously failed. We gave such states a “bad smell,”

so that the planner would prefer actions that avoided them

wherever possible. This mechanism and its motivation are

roughly analogous to aspects of Tabu search (Glover & La-

guna 1993).

TAP Scheduling

The CIRCA TAP scheduling problem is fairly simple, but

it has two unique aspects. First and foremost, the tasks be-

ing scheduled are automatically generated, so they are not

as well-organized and optimized as human-generated tasks

might be. One simple but confounding result is that TAP

timing specifications do not fall on simple harmonic fre-

quencies, so the least common multiple (LCM) of the TAP

periods is generally extremely large. As a result, traditional

schedulers that attempt to schedule calendars of task execu-

tions out to the LCM of the task periods (such as the Maruti

scheduler (Leviet al. 1989)) will often be completely unable

to deal with TAPs.

The second special aspect of CIRCA’s scheduling prob-

lem is that, instead of a period specification, each TAP is

given to the Scheduler with a specification of the maximum

acceptable invocation separation. CIRCA specifies invo-

cation separations because synchronous behavior is not nec-

essary for the control tasks it plans. These unique con-

straints led us to develop novel TAP scheduling approaches

that can significantly outperform simple adaptations of exist-

ing periodic-task scheduling algorithms (Musliner 1994a).

Meta Control

The Adaptive Mission Planner (AMP) is responsible for

the highest-level control of a CIRCA agent, managing the

agent’s long-term goals and the agent’s deliberation activ-

ity. The agent’s long-term mission may be divided into

phases, each of which requires its own safety-preserving

and goal-achieving reactive plan. The AMP reasons about

long-term goals, problem structures, and approaching dead-

lines to decide what the near-term goals should be, and

what problems the near-term reasoning should be focused

on. Because the phase plans may need to be created un-

der time pressure as a mission executes, the AMP can

make tradeoffs in which mission goals and safety threats

are considered in each phase. The AMP’s meta-control

functions intelligently allocate the CSM deliberation effort

to different mission phases, solving the problems with dif-

fering levels of safety and goal-achievement depending on

how much deliberation time is available (Musliner 2001;

Goldman, Musliner, & Krebsbach 2003; Musliner, Gold-

man, & Krebsbach 2003).

We take an approximate decision-theoretic approach to

the CIRCA deliberation scheduling problem: decision-

theoretic, because we attempt to optimally allocate the

CSM’s reasoning time; approximate because full formula-

tions of the problem are intractable and some formulations

involve an infinite regress. CIRCA’s earliest meta-control

used coarse-grain modifications to the problems it solves

to adjust planning time, trading off plan quality (Musliner

2000). In later work (Goldman, Musliner, & Krebsbach

2001), we developed a Markov Decision Process (MDP)

model of the deliberation scheduling problem, controlling

which of several possible problems the system should work

on at any time. Since the MDP may be very large and dif-

ficult to solve, we also presented greedy (myopic) approx-

imations to the optimal solution. In those experiments we

showed that a discounted myopic approximation technique

provided good performance with very limited computational

costs. We also compared the performance of the discounted

greedy approximation with other strawman agents that at-

tempt to manage deliberation using easy-to-compute heuris-

tics.

Distributed CIRCA: Multi-Agent Performance
Guarantees

We have also investigated methods for extending the real-

time performance guarantees that single-agent CIRCA pro-

vides to small teams of agents. At the highest level, the

AMP’s primary responsibility is managing an individual

agent’s tasks and coordinating with other agents to achieve

the overall team mission. The AMP does this by determining

what tasks are its responsibilities through negotiation with

other cooperating agents, and then arranging to have plans

(controllers) generated to successfully address those tasks

during the execution of the mission.

The overall team mission is divided intophases, which

correspond to modes or time intervals that share a funda-

mental set of common goals, threats, and dynamics. For

example, our UCAV scenarios include missions that have

phases such as ingress, attack, and egress. The ingress phase

is distinguished from the attack phase both by the character-

istics of the flight path (e.g., a nap-of-earth stealthy approach



vs. a popup maneuver very near a target) and by the ex-

pected threats ((e.g., the types of missile threats present at

different altitudes) and goals (e.g., reaching the target zone

vs. deploying a weapon).

In this context, a team of CIRCA agents must arrange

to have different agents responsible for different goals and

threats, depending on their available capabilities and re-

sources (e.g., ECM equipment and weapons loadout). Using

a Contract-Net-like arrangement (Smith 1977), the AMPs

submit bids to handle these responsibilities. For each mis-

sion phase, the CIRCA agents must have plans, or con-

trollers, that are custom-designed (either before or during

mission execution) to execute the mission phase and make

the best possible effort to achieve the goals and defeat the

threats associated with the phase. When necessary, the

agents can build coordinated plans that communicate at

runtime to ensure real-time coordination across a team of

agents.

The most critical form of coordination for real-time safety

guarantees iscoordinated preemption, in which a set of com-

plementary reactions executed by distributed agents detect

threats and take action to preempt hazardous transitions. In

its simplest form, these “You sense, I’ll act” plans

A key observation is that this really devolves into two sep-

arate issues:

• Planned communication — The agents must recognize

the need to explicitly communicate (both sending and re-

ceiving) at a rate fast enough to satisfy the coordinated pre-

emption timing constraint. In our example, the sensing agent

must agree not only to detect the hot spot fast enough, but

also to tell the other agent about the opportunity quickly

enough. Likewise, the acting agent must focus sufficient at-

tention on “listening” for a message from the sensing agent

at a high enough frequency that it can guarantee to both re-

ceive the message and act on the opportunity, all before the

deadline.

• Distributed causal links — The distributed agents must

be able to represent and reason about changes to their world

that are not directly under their control, but which are pre-

dictable enough to be relied upon for a preemption guar-

antee. For example, in our scenario, the sensing agent must

rely on the acting agent to take the appropriate action in time

to guarantee that the data collection is performed in time. In

complementary fashion, the acting agent must construct a

plan that honors its commitment to the acting agent. If one

of the agents cannot construct a plan that satisfies its com-

mitments, it must inform the others.

Probabilistic CIRCA

As we applied CIRCA in increasingly demanding ap-

plications, it became apparent that the architecture’s

theoretically-strong stance on performance guarantees was

not flexible enough to deal with many real-world domains.

In some problems, some action choices expose an agent to

more possible failure-causing events than preemptive ac-

tions can be assured to avoid. More generally, there are

many domains that are too dangerous to ever ensure 100%

safety; in these domains, we’d like the system to make trade-

offs between mission performance and safety criteria.

Faced with a domain that cannot be made 100% safe,

Classic CIRCA fails to find a plan. And even if a 100% safe

plan can be found, it may be less than satisfactory. For ex-

ample, when we built a domain model for Classic CIRCA to

control an aircraft in which the landing gear could fail, and

there was no way to repair the landing gear or land safely

with it broken, the system quickly constructed a safe plan:

sit on the runway and don’t take off. Unfortunately, this plan

did not achieve any of the non-safety-related mission goals.

Trading off some degree of safety in order to achieve

important mission-related goals requires that CIRCA make

careful choices about which potential failures it is most

safe not to be prepared for. Probabilistic CIRCA does this

by trimming away enough of the most unlikely transitions

to failure that the remaining ones can be guaranteed pre-

empted. When developing this variation of CIRCA, we de-

veloped a variety of techniques for estimating probabilities

of reaching states and traversing transitions to failure; the

non-Markovian aspects of CIRCA in particular make it chal-

lenging to assess the probabilities of transitions to failure

that persist across sequences of states.

The cumulative probabilities of the transitions that have

been trimmed to achieve a subset of the space that can be

safely controlled indicate the degree of risk that would be in-

curred should the control plan be followed. With this infor-

mation, informed tradeoffs between risk and mission goals

are possible (Atkins, Durfee, & Shin 1996).

This in turn raises the question of what can or should hap-

pen if one of the trimmed transitions actually occurs, putting

the agent into a state that its control plan isn’t prepared to

handle. Our extensions consider all of the states just out-

side of the control envelope and develop tests to detect when



such a state has been reached. A TAP is formed with this

test, where the corresponding action involves replacing the

current TAP schedule with another one that is intended to at

least maintain safety. For example, in our aircraft domain,if

the landing-gear failure was trimmed from the initial control

plan, the TAP detects this failure and implements a control

plan for circling the airport, with the expectation that this

will buy time for the AIS to use in formulating an appro-

priate control plan for recovering from this situation. Al-

ternatively, the appropriate control plan for this contingency

might have been developed ahead of time, in which case it

would be swapped in immediately (Atkins, Durfee, & Shin

1997).

GSMDPs: To capture a more powerful and precise no-

tion of probabilistic guarantees, we began exploring a mod-

ified CIRCA world model in which the fixed worst-case de-

lays associated with transitions were replaced by probability

distributions of possible delays. The idea then is to build

plans that allow a certain level of safety risk, as long as the

overall probability of failure remains below some specified

threshold. It turns out that the resulting model is a General-

ized Semi-Markov model, and is thus extremely intractable.

Even assessing whether a particular controller meets the

safety threshold is not analytically computable. So first we

developed a sampling-based approach to probabilistic verifi-

cation, deriving formal bounds on how many simulated plan

executions (samples) had to be generated to ensure, with a

certain level of confidence, that a plan met the desired safety

threshold.

Conclusion and Future Directions

In summary, the CIRCA architecture combines soft-real-

time reaction planning and scheduling with hard-real-time

reactive plan execution, all tailored to realistic non-closed-

world domains. The architecture has been extended in

several major directions, including formal verification of

performance guarantees, multi-agent team guarantees, and

probabilistic plans with well-understood risk/reward trade-

offs. Ongoing challenges include improving the scalabil-

ity of the planning algorithms and extending the representa-

tional power of the domain description language to include

task hierarchy and decomposition information.

References

Agre, P. E., and Chapman, D. 1987. Pengi: An implemen-

tation of a theory of activity. InProc. National Conf. on

Artificial Intelligence, 268–272. Morgan Kaufmann.

Atkins, E. M.; Durfee, E. H.; and Shin, K. G. 1996. Plan

development using local probabilistic models. InUAI, 49–

56.

Atkins, E. M.; Durfee, E. H.; and Shin, K. G. 1997. De-

tecting and reacting to unplanned-for world states. InProc.

National Conf. on Artificial Intelligence, 571–576.

Glover, F., and Laguna, M. 1993. Tabu search. In Reeves,

C., ed.,Modern Heuristic Techniques for Combinatorial

Problems. Oxford, England: Blackwell Scientific Publish-

ing.

Goldman, R. P.; Musliner, D. J.; Krebsbach, K. D.; and

Boddy, M. S. 1997. Dynamic abstraction planning. In

Proc. National Conf. on Artificial Intelligence, 680–686.

Goldman, R. P.; Musliner, D. J.; and Krebsbach, K. D.

2001. Managing online self-adaptation in real-time envi-

ronments. InProc. Second International Workshop on Self

Adaptive Software.

Goldman, R. P.; Musliner, D. J.; and Krebsbach, K. D.

2003. Managing online self-adaptation in real-time envi-

ronments. InLecture Notes in Computer Science, volume

2614. Springer-Verlag. 6–23.

Goldman, R. P.; Musliner, D. J.; and Pelican, M. J. 2002.

Exploiting implicit representations in timed automaton ver-

ification for controller synthesis. InProceedings of the

2002 Hybrid Systems: Computation and Control Work-

shop.

Levi, S. T.; Tripathi, S. K.; Carson, S. D.; and Agrawala,

A. K. 1989. The MARUTI hard real-time operating sys-

tem. ACM Operating System Review23(3).

McDermott, D. 1999. Using regression-match graph to

control search in planning.Artificial Intelligence109(1-

2):111–159.

Musliner, D. J.; Hendler, J. A.; Agrawala, A. K.; Durfee,

E. H.; Strosnider, J. K.; and Paul, C. J. 1995. The chal-

lenges of real-time AI.IEEE Computer28(1):58–66.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1993.

CIRCA: a cooperative intelligent real-time control archi-

tecture. IEEE Trans. Systems, Man, and Cybernetics

23(6):1561–1574.



Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1995. World

modeling for the dynamic construction of real-time control

plans.Artificial Intelligence74(1):83–127.

Musliner, D. J.; Goldman, R. P.; and Krebsbach, K. D.

2003. Deliberation scheduling strategies for adaptive mis-

sion planning in real-time environments. InProc. Third

International Workshop on Self Adaptive Software.

Musliner, D. J.; Goldman, R. P.; and Pelican, M. J. 2000.

Using model checking to guarantee safety in automatically-

synthesized real-time controllers. InProc. IEEE Int’l Conf.

on Robotics and Automation.

Musliner, D. J. 1993.CIRCA: The Cooperative Intelligent

Real-Time Control Architecture. Ph.D. Dissertation, Uni-

versity of Michigan, Ann Arbor. Available as University

of Maryland Computer Science Technical Report CS-TR-

3157.

Musliner, D. J. 1994a. Scheduling issues arising from auto-

mated real-time system design. Technical Report CS-TR-

3364, UMIACS-TR-94-118, University of Maryland De-

partment of Computer Science.

Musliner, D. J. 1994b. Using abstraction and nondeter-

minism to plan reaction loops. InProc. National Conf. on

Artificial Intelligence, 1036–1041.

Musliner, D. J. 2000. Imposing real-time constraints on

self-adaptive controller synthesis. InProc. Int’l Workshop

on Self-Adaptive Software.

Musliner, D. J. 2001. Imposing real-time constraints on

self-adaptive controller synthesis. InLecture Notes in Com-

puter Science, number 1936. Springer-Verlag.

Smith, R. 1977. The contract net: A formalism for the

control of distributed problem solving. InProc. Int’l Joint

Conf. on Artificial Intelligence, volume 1, 472.

Yovine, S. 1998. Model-checking timed automata. In

Rozenberg, G., and Vaandrager, F., eds.,Embedded Sys-

tems. Springer Verlag.


