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ALAN PARKS
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LAWRENCE UNIVERSITY

These problems are coordinated with Introduction to Differential Equations and
Linear Algebra, by Alan Parks, 5th Ed., αλασ Publishing, Appleton, WI. Some terms
are introduced in these problems, and so there is an index at the end.

⇐= Chapter 2 =⇒

Problem 2.1. Find a solution or solution equation to each of the following IVPs.
Remember to resolve absolute values. For problem (c), find the domain, as well.

(a)
dy

dt
=
y · (y − 7)

e5t
and y0 = 5

(b)
dx

dt
=

sin(7t) · (x2 − 16)

x2 + 3
and x0 = 4

(c)
dz

dt
= 2 · t · sec(z) and z0 = 0

Problem 2.2. Show that y = 0 (constant) and y = t3 are both solutions to this
IVP:

dy

dt
= 3 · y2/3

Thus, an IVP does not have to have a unique solution. We will discuss the profound
significance of uniqueness in class. (Note: you are not asked to find solutions, but
to verify solutions – that means plugging in!)

Problem 2.3. Solve the following IVP’s. In each case be deliberate about classi-
fying the problem as separable or first order linear. If logarithms occur, write their
arguments appropriately without absolute values.

a) x′ +
7

t− 5
· x = 2, x0 = 0 b) y′ + cot(t) · y = 2 · cos(t), y(π/2) = 0

c) A′ + t3 · A2 = 16 · t3, A0 = 1 d) t · u′ + 3 · u = t3, u(1) = 1

e) y′ = cos(y) · tan5(t), y0 = π/2 f) z′ = z3, z0 = 1

g) y′ +
2t

t2 + 1
· y = t2, y0 = 1 h) q′ − 7 · et · q = 0, q0 = −1

i) w′ − exp(2 · w) · t = 0, w0 = 0 j) y′ + 5 · y = 20 · t, y0 = 6

k) x′ + 3 · t2 · x = t6, x0 = 1 λ) z′ =
ez · sin(3t)

z
, z0 = 1

1
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Problem 2.4. Solve for x in this IVP, and determine the domain – the set of
possible values of t. (Hint: x′ has to be t times a non-negative number.)

dx

dt
= t ·

√
9− x2 and x0 = 0

Problem 2.5. Solve this problem, using that it first-order linear in x′.

x′′ − 3 · x′ = 2 · e3t and x0 = 1, x′0 = 1

Problem 2.6. Consider the Bernoulli Equation: x′ + p(t) · x+ q(t) · xn = 0. Make
the substitution w = x1−n and see what happens.

Problem 2.7. We will show that there is a continuous solution y to this discon-
tinuous IVP:

y′ − 3 · y =

{
2 when 0 ≤ t ≤ 1

5 when 1 < t
and y0 = 0

(a) Solve for y when 0 ≤ t ≤ 1. Take note of y(1).
(b) Solve for y when t > 1, using y(1) as initial value.
(c) Note that y is continuous for all t ≥ 0. Describe the graph of y at t = 1.

Problem 2.8. Modify the gravity and air resistance model on p.22: replace k ·v by
k · v2. (This is an example of a drag equation for rockets at high velocity.) Assuming
that we keep v > 0 (that we are moving down), find the equilibrium. If v0 starts
below equilibrium, what happens as t→∞?

Problem 2.9. Suppose that a population P has P0 > 0 and grows at a rate
proportional to the m-th power of the population. (Exponential growth occurs when
m = 1.)
a) Suppose that 0 < m < 1. Show that P →∞ as t→∞.
b) Suppose that 1 < m. Show that P →∞ as t→ A for some positive number A.
(We say that P blows up in finite time.) Make sure A > 0.

Problem 2.10. Placing a cake in the oven or a soda can in a refrigerator are spe-
cial cases of the following: an object with no heat source of its own is placed in an
environment of constant temperature E. What is called Newton’s law of cooling1

asserts that the object’s temperature will change at a rate proportional to the dif-
ference between E and the object’s temperature. Let y stand for the temperature of
the object as a function of time t, and assume that y0 < E. Show that y → E as
t→∞. In the specific case that E = 350◦F and y0 = 70◦F, suppose that y = 200◦F
after half an hour. What is y after an hour and a quarter?

1If the temperature of the object is less than E, it will heat up, and cooling becomes heating.
Mathematicians amuse themselves by thinking of heating as negative cooling ; physically the two
processes are obviously very different!



PROBLEMS FOR MATH 210 3

Problem 2.11. In the Lotka-Volterra equation, let p = q = r = s = 1, so that the
equilibria are (0, 0) and (1, 1). (Not one rabbit, one wolf but one unit of population
for each!) Graph the solution curve having x0 = 1/2 and y0 = 1/2. (Hint: find C
based on the initial conditions. The graph is hard to get: factor x′ = x(1 − y) and
think about whether x increases or decreases; do the same for y.)

Problem 2.12. In the logistic equation, it is of mathematical interest to consider
an initial value P0 < 0. Show that P blows down (goes to −∞) in finite time. (Note:
make sure you show that the time is positive when P = −∞.)

Problem 2.13. (A simple economic model.) Suppose that the price p of a good
changes at a rate proportional to the difference between the demand and supply of
that good. Assume that demand is a decreasing, linear function of p, and that supply
is an increasing linear function of p. Get a first order linear DE out of this. Will a
solution approach equilibrium?

Problem 2.14. Modify the loan-payment equation for this problem: we invest m
dollars per month in an account that grows at a monthly interest rate r. Solve the
equation for P , and determine the doubling time: the value of t when P = 2 · P0.

Problem 2.15. Solve the rocket propulsion equation in the (easier!) case that
ρ = 0. Show that the velocity of the rocket can be made greater than the velocity
of the exhaust gasses. (This fact is important in designing a rocket to escape the
gravitational pull of a planet.)

Problem 2.16. An object is placed on the x-axis at the point x0 > 0 with zero
initial velocity. An inverse square gravitational force acts on the object, pulling it
toward the “sun” at the origin. Write y = x′ and get a DE by writing x′ and y′ in
terms of x and y. Now use the equation for dy/dx to solve for y as a function of
x. Remembering that y = x′, separate x and t, write t as an integral in x. (The
integral can be done, and if you are ambitious you might try it, but you can leave
the integral alone if you wish.)

Problem 2.17. A tank holds 10 gallons of water and the water is capable of holding
a great deal of salt. Initially there is 1 gallon of water and no salt in the tank. Then
two spigots are turned on, so that water enters the tank at 3 gallons per minute
and salt enters at 2 ounces per minute. The tank is constantly stirred, as well, so
that the salt mixes thoroughly with the water without changing the volume of the
water. When the water and salt begin to enter, a tap opens at the bottom of the
tank and lets out 1 gallon of salt-water per minute. Write down a DE that describes
the amount of salt in the tank at time t. (Hint: first solve for the amount w of water
as a function of time; let the units on salt and water guide you.) Solve the DE you
wrote down; how much salt is in the tank when the tank is full?

Problem 2.18. It is a very important physical principle that systems tend to
respond to a periodic stimulus in the same frequency as the stimulus. If f is constant,
then the function cos(2 · π · f · t) has frequency f . Show that the solution to

x′ + k · x = cos(2 · π · f · t), x0 = 0
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has frequency f , as well. (You can assume that k is a positive constant.)

⇐= Chapter 3 =⇒

Problem 3.1. Prove the associative law of matrix addition.

Problem 3.2. Show that scalar multiplication distributes over matrix addition:
that

α · (A+B) = (α · A) + (α ·B)

for all m× n matrices A,B and numbers α.

Problem 3.3. Compute A · B in each of the following. (Notes: in (b), be care-
ful about the size of the result! In (c), the notation R is for the rotation matrix,
introduced on p.43.)

a) A =

0 −1 2
4 5 6
1 0 1

 B =

 3 −1
10 1/2
0 2

 b) A =

−2
3
6

 B =
(
−1 0 2 4

)
c) A = R(1 + π/3), B = R(π/6− 1) d) A =

(
1 0
2 3

)
B =

(
0 2
2 0

)
Problem 3.4. Find all matrices A such that

A ·
(

2 3
1 1

)
=

−4 0
1 1
0 2


Problem 3.5. Let b, c be arbitrary numbers with c 6= 0 and define

A =

[
b c

(1− b2)/c −b

]
Show that A2 = I2. (Note: thus, there are infinitely many square roots of 1 among
the matrices.)

Problem 3.6. Show that Im · A = A for all m× n matrices A.

Problem 3.7. In each of the following two cases, compute A2, A3, and so on until
you see a pattern. What is Ak for an arbitrary positive integer k in each case?

A =

(
1 2
0 1

)
A =

0 −1 0
0 0 1
1 0 0


Problem 3.8. Find a 2× 1 matrix u with non-zero complex number entries, such
that uT · u = 0.
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Problem 3.9. Find a non-zero matrix A such that

A ·

1 2
3 4
5 6

 =

[
0 0
0 0

]
Show that there is no non-zero matrix B such that

B ·
[
1 2
3 4

]
=

[
0 0
0 0

]
Problem 3.10. For each real number c, define

f(c) =

[
c 0
0 c

]
For real numbers c, d, show that f(c + d) = f(c) + f(d) and f(c · d) = f(c) · f(d).
Define i = R(π/2), and show that i2 = f(−1). Does this suggest a way to represent
the complex numbers using matrices?

Problem 3.11. (Continuing the previous problem.) Define

r =

[
0 1
2 0

]
What real number corresponds to r2? Use matrices to show that

(
√

2− 1) · (
√

2 + 1) = 1

⇐= Chapter 4 =⇒
Problem 4.1. Use Elimination (by hand) to solve the systems of equations, noting
the pivots and elementary operations along the way and remarking the rank and
nullity at the end.

a)
2A− 2B − 10C = 4
−2A+ 3B + 13C = -3

3B + 9C = 3
b)

x1 − 2x2 + 2x3 − 3x4 = 19
−3x1 + 6x2 − 8x3 + 13x4 = -71

c)

p− 2q − r = -6
2p− 2q − 2r = -8
−p+ q + 2r = 3
−p+ 2q + 2r = 5

d)
x+ z + w = 2

x− y + 3z − 2w = -3
4x− 3y + 10z − 5w = -5

Problem 4.2. Find b so that this system is consistent.

x1 − 3x2 + 5x3 = 4

2x1 + x2 − 3x3 = b

5x1 + 6x2 − 14x3 = 8

Problem 4.3. Find all matrices A such that

A ·
(

2 1
−3 1

)
=

(
2 1
−3 1

)
· A

(Hint: what is the size of A? Let its entries be unknowns and solve equations.)
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Problem 4.4. Use Elimination to solve the following system of equations (given in
terms of its augmented matrix), but perform the arithmetic steps to three significant
digits with an exact base-10 exponent. Find the approximate solution this way. Now
solve the system exactly. Is there much difference between the approximate and
exact solutions? (

5 5 · 105 6.18 · 105

2 · 10−5 3 3.72

)
Problem 4.5. In each case, find an example of a system of linear equations with
the indicated features. (Feel free to use examples from other homework problems or
from class.)
a) Same number of equations as variables, infinitely many solutions.
b) Less equations than variables, no solution.
c) Less variables than equations, unique solution.

Problem 4.6. When Elimination is performed on the 2×3 matrix A (as coefficient
matrix with no right side), what are the possible row-echelon forms that could result?
(Use 1’s and 0’s where they have to occur; use stars for unknown entries.)

Problem 4.7. (Leontief ’s model of an economy) We have an economy consisting
of n people, each of whom produces one unit of a unique product. Person i produces
P [i] worth of product. In order to make one unit of product i, person i purchases
A[i, j] units of product j. (So that 0 ≤ A[i, j] ≤ 1.) We assume that all of what
is produced is purchased. What does this say about the matrix A? What does the
matrix A ·P measure? Why might it be interesting to know whether there is an n×1
matrix P such that A · P = P? (The existence of P is that the economy is closed.)

Problem 4.8. The table below gives the matrix A of the previous problem in a
Leontief model. Solve for the price vector P .

Units purchased each year
wheat bread wood tables

wheat producer 0 0.3 0.15 0.2
bread producer 0.8 0.2 0.2 0.3
wood producer 0.1 0.25 0.1 0.4
tables producer 0.1 0.25 0.55 0.1

unit price P[1] P[2] P[3] P[4]

Problem 4.9. (Linear Markov process) Suppose that if it is sunny today, then
there is a definite chance p (so that 0 ≤ p ≤ 1) that it will be sunny tomorrow.
Suppose that if it is not sunny, it is rainy, so there the chance of rain the day after a
sunny day is 1−p. Suppose that if it is rainy today, the chance it is sunny tomorrow
is q, and the chance it is rainy tomorrow is 1 − q. Today it is sunny. What is your
forecast for 10 days from now? What happens after a long period of time?

Problem 4.10. (Polynomial values.) Given arbitrary coefficients c0, c1, . . . , cn, we
can define a polynomial

f(x) = c0 + c1 · x+ · · ·+ cn · xn
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We say this polynomial has degree at most n, since cn could be 0. We want to notice
that f(x) is a matrix product:

f(x) =
(
1 x x2 · · · xn

)
·


c0
c1
...
cn


We will see that it will be useful to regard the right column as variable. Call it C.
Now suppose we have m values x1, x2, . . . , xm. Express the column

f(x1)
f(x2)

...
f(xm)


as V · C where V is m × (n + 1). (The matrix V is called a Vandermonde matrix 2

for x1, . . . , xm.)

Problem 4.11. (Continuation of the previous problem.) Suppose that m ≥ (n+1),
and let V be the m × (n + 1) Vandermonde matrix for x1, . . . , xm where the xj are
distinct. Show that V · X = Om×1 has a unique solution. (Hint: remember the
algebraic fact: a non-zero polynomial of degree at most n can have at most n roots.
If V · C = O with C 6= O, then the polynomial f(x) formed from C is a non-zero
polynomial; what are its roots?)

Problem 4.12. Use Elimination to find a polynomial f(x) of degree at most 2 such
that f(2) = 3 and f(3) = 10 and f ′(2) = 7.

Problem 4.13. (Kirchoff’s Laws.) The word graph is often used for a set of vertices
(points), some of which are connected by edges (curves). A simple electrical circuit
is a graph in which the vertices are junctions and the edges are connecting wires or
components. In each edge there is a current3 J . If we choose a direction for each
edge by putting an arrow on one end, then the sign of J indicates the direction of
the current – with the arrow if J > 0 and against it if J < 0. Kirchoff’s Current
Law 4 asserts that, at each junction, the sum of the currents coming in (on arrows)
is equal to the sum going out. Observe that this is a system of linear equations. A
tree in a graph is a set of edges that does not contain a loop.5 In the graph for an
electrical circuit, choose a set of edges that forms a tree, using as many edges as
possible. In the equation for Kirchoff’s Current Law, this set of edges can be a set of

2That Vandermonde’s name is attached to this matrix is apparently a mistake! In a paper the
mathematician Lebesgue claims that the mistake is due to a misreading of the notation used by
Vandermonde in one of his papers.

3For those unfamiliar with electronics: current measures the number of electrons per unit time
passing some point in the wire.

4This rule is also called Kirchoff’s Junction Rule, and by other names as well.
5The idea of a loop is fairly intuitive; here is a formal definition: a loop is a list v1, . . . , vk of

vertices such that there is an edge between vj and vj+1 for each j with 1 ≤ j < k. Also, v1 = vk
and k ≥ 2. Thus, a loop travels over edges, ending up where it started. A loop does not have to
follow the arrows.
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pivoted variables. (The proof involves some elementary graph theory.) Demonstrate
this in the case of the circuit here. Note that the currents have been labeled but you
will need to choose a direction for each, and you will need to choose a maximal tree.
Choose two different trees and, in each case, show that the currents corresponding
to edges in your tree can be used as pivots in Elimination. (Hint: in the columns of
the augmented matrix, write the tree variables to the left.)

J1

J2 J3

J4

J5

J6 J7

Problem 4.14. (Continuing the previous problem.) In a graph representing an
electrical circuit, each edge has an associated potential drop6 This drop can be positive
or negative. There is a second Kirchoff’s Law: the Voltage Law 7. which governs the
potential: the sum of the drops around each loop is zero.8 This is yet another system
of linear equations! For each current Ji in the previous graph, define a potential Vi.
The tree edges you found in the previous problem give the free variables Vi for the
voltage law. Write down the equations for the Voltage Law and show that the tree
edges can give the free variables. (Hint: write the non-tree edge variables to the
left.)

Problem 4.15. Here is another circuit. Get the equations for the Current Law
and for the Voltage Law. Think about basic variables in each case.

A B

CD

J1

J2

J3

J4 J5

Problem 4.16. The Fibonacci numbers form a sequence F0, F1, . . . defined by re-
cursion: F0 = 1, F1 = 1, and Fn+2 = Fn+1 + Fn for all n ≥ 0. Show that there is a
matrix M such that (

Fn+1

Fn+2

)
= M ·

(
Fn
Fn+1

)
for all n ≥ 0

Now show that (
Fn
Fn+1

)
= Mn ·

(
F0

F1

)
for all n ≥ 0

6Potential is usually measured in volts and represents electromotive force: work done per unit
charge. The drop is often called the voltage drop.

7This rule is also called Kirchoff’s Loop Law
8As we travel around a loop, if potential V is encountered in the direction of an arrow, it counts

as +V around the loop; if we are moving against the arrow, then −V is added.
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Problem 4.17. We have yellow flags and blue flags that are one foot tall, and we
have red flags that are two feet tall. Let Gn be the number of ways to arrange yellow,
blue, and red flags on n feet of flag pole. Explain why9

Gn = 2 ·Gn−1 +Gn−2 for n ≥ 3

Also explain why G1 = 2 and G2 = 5. Find a matrix N such that[
Gn+1

Gn+2

]
= Nn ·

[
2
3

]
for n ≥ 0

Problem 4.18. (heat equilibrium) In the graph below, the nodes are locations
where heat is measured. The nodes labeled with single letters are kept at constant
heat. The nodes labeled Xj can change as heat diffuses across the edges. We are
interested in the equilibrium state where each Xj is constant. Diffusion dictates that
each Xj is the average of the temperatures of nodes to which it is connected. Thus,
for example,

X1 =
1

3
·
[
X2 + A+B

]

A

B

C

X1

X2 X3

Show that the equilibrium equations have a unique solution, given that A,B,C are
given constants. (Don’t choose values for A,B,C; look at the rank of the coefficient
matrix.) Now let A = 5 and B = 2 and C = 20 and solve for the Xj. (Suggestion:
choose your pivots to avoid fractions.)

Problem 4.19. Another heat equilibrium problem. Show that if A,B are con-
stants, there is always a unique solution for the Xj.

X1

A X3

B

X2

9This problem is a typical problem of combinatorics – the counting done in the course of that
name.
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⇐= Chapter 5 =⇒

Problem 5.1. For each of the following matrices, determine whether it has an
inverse and, if it does, find that inverse.

a)

−2 3 5
1 2 1
1 1 0

 b)

−1 −1 1
−1 1 −1
1 −1 −1

 c)

1 a b
0 1 c
0 0 1


Problem 5.2. Show that

(
a b
c d

)
has rank 2 if and only if ad − bc 6= 0. (Hint:

Elimination! Consider two cases: first assume that a 6= 0, so that number can be
used as a pivot. The other case: a = 0.)

Problem 5.3. Let A and D be n×n and invertible. Show that (AD)−1 = D−1A−1.

Problem 5.4. Let A be invertible and k a positive integer, then (Ak)−1 = (A−1)k.

Problem 5.5. Let A be invertible. Show that (AT )−1 = (A−1)T .

Problem 5.6. Show that if A is 5× 8, then there cannot be a matrix C such that
CA = I8. (Hint: if C does exist, how many solutions are there to AX = O5×1?)

Problem 5.7. Under what circumstances does the following matrix have an in-
verse? a b c

0 d e
0 0 f


Problem 5.8. Suppose that A is 7 × 5 and B is 7 × 1. Could AX = B have a
unique solution? Why or why not?

Problem 5.9. Suppose that A is 3 × 6. Could AX = B have a solution for all
possible 3× 1 matrices B? Why or why not?

Problem 5.10. Find a 3 × 4 matrix A and 4 × 3 matrix C such that A · C = I3.
(Note: it is not possible to have C · A = I4.)

Problem 5.11. Consider these data points: (0, 2), (1, 3), (2, 5), (3, 4).

(a) Find the line y = c0 + c1 · x of best fit to the points, with its minimal squares
error E1.

(b) Find the parabola y = c0+c1·x+c2·x2 of best fit, with its error E2. (The numbers
c0, c1 will be different for the parabola.) Why is it expected that E2 < E1?

(Note: the calculations are not horrendous by hand, but you might consider using
software. Be sure to use Proposition 5.5, in any case.)
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Problem 5.12. Suppose we have the equation g · x = y, where g is a theoretical
constant. Assume we have m data points (xk, yk) for 1 ≤ k ≤ m that have been
observed. Find the minimum of the squares error E(g) in this context.10

⇐= Chapter 6 =⇒

Problem 6.1. For each of the following matrices, compute the determinant. Do at
least one of them using Elimination, and do at least one using cofactors. (You might
want to check your work using a calculator or computer, but do the calculations by
hand to make sure you understand the formulas.)

a)


2 5 0 0
1 2 −3 1
3 8 2 −1
1 3 −10 3

 b)


3 0 −4 0
1 1 3 −1
1 0 6 −5
1 2 1 3

 c)

−2 1 3
1 3 1
3 0 −2


Problem 6.2. Consider the general 3 × 3 matrix A. Compute the determinant
using cofactors about two different rows and about one column (your choice), and
show that you get the same answer in all three cases. (Of course, this answer should
agree with the “crisscross” formula for the determinant of a 3× 3 matrix.)

Problem 6.3. Suppose that A and B are n × n matrices and assume that AB is
invertible. Show that A and B are each invertible. (Hint: det(A ·B)?)

Problem 6.4. Let A be n × n and let β be a number. Show that det(β · A) =
βn · det(A). (Hint: β ·A is obtained from A by a succession of row multiplications.)

Problem 6.5. Complete the following steps to show that if P is the parallelogram
with corners at (0, 0) and (a, b) and (c, d) and (a+ c, b+ d), then the area of P is the
absolute value of the determinant of

A =

(
a c
b d

)
a) Let L be the ray from (0, 0) through (a, b), and let θ be the angle from this ray
to the positive x-axis. Rotate P by the angle θ. Argue that one side of the rotated
parallelogram is on the positive x-axis.
b) Recall the rotation matrix R(θ). Argue that the columns of

R(θ) · A

are corners of the rotated parallelogram, and so R(θ) · A has the form(
e f
0 g

)
10Notes. The minimum is not the numerical average of yk/xk. Also, the expression g · x is not

an arbitrary polynomial of degree at most 1, since there is no constant term, so this is not the kind
of regression problem we discussed previously.
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c) Show that the area of the rotated parallelogram is |e · g|.
d) Complete the following calculation to finish the problem.

|e · g| =
∣∣∣∣det

(
e f
0 g

)∣∣∣∣ = |det (R(θ) · A)| = · · ·

⇐= Chapter 7 =⇒

Problem 7.1. Solve the following IVP’s.

a) y′′ + 2 · y′ − 15 · y = 0, y0 = 5, y′0 = 31

b) y(3) − 9 · y′ = 0, y0 = 3, y′0 = 3, y′′0 = 9

c) y(3) − y′′ − 2 · y′ = 0, y0 = 8, y′0 = 2, y′′0 = 4

Problem 7.2. Find the general solution to the following DE’s.

a) y(3) + y′′ + 16 · y′ + 16 · y = 0

b) (D − 2)2 · (D + 5)3 ·
(
y(3) + 4 · y′′ − 5 · y′

)
= 0

Problem 7.3. Solve these IVP’s.

(a) y′′ + 16 · y = 0, y0 = −2, y′0 = 4

(b) y(3) − 3 · y′′ + y′ − 3 · y = 0, y0 = 4, y′0 = 13, y′′0 = 36

Hint: try 3 as a root.

(c) y′′ − 4 · y′ + 7 · y = 0, y0 = 4, y′0 = 8

Problem 7.4. Solve the following IVP’s.

a) y′ − 7 · y = 10 · e2t + 8 · e−t, y0 = 4

b) y′′ − 2 · y′ − 8 · y = 6 · e4t, y0 = −2, y′0 = −1

c) y′′ − 5 · y′ + 4 · y = 3 · sin(t)− 5 · cos(t), y0 = 0, y′0 = 4

(d) y′′ + y = t2, y0 = 4, y′0 = 4

Problem 7.5. Find the over-general solution to the following DE, and identify the
homogeneous part of the solution: y(5) + 2 · y(3) = sin(

√
2 · t) + 4t− et.

Problem 7.6. In the underdamped case of the mechanical system, show that y → 0
as t→∞. Find the frequency with which y oscillates as it goes to 0.

Problem 7.7. The pendulum clock model is Example 3 at the beginning of this
chapter. Find the length L in feet given that g ≈ 32 ft/sec2, k ≈ 5, and that the DE
is underdamped with period 2 seconds. (This corresponds to a design of Huygens
around 1656.)
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Problem 7.8. A floating buoy experiences an upward acceleration equal to 11
times the length of its submerged part11 and a downward constant acceleration of
magnitude 9.8 due to gravity. (Acceleration uses length in meters and time in sec-
onds.) Write down the DE governing the submerged length L and find its general
solution. (Hint: use the water surface as origin and measure L downward. Up is
negative!)

Problem 7.9. (This problem will be used in Chapter 13.) Suppose that x(t) is
defined for 0 ≤ t ≤ 1 and x′′+k ·x = 0 there. Assume also that x(0) = 0 and x(1) = 0
but that x(t) 6= 0 for some t between 0 and 1. Show that k = π2 ·n2 for some integer
n. (Hint: if k < 0, show that the solution cannot satisfy the conditions.)

Problem 7.10. (Reduction of Order 12) We consider the equation

(1) y′′ + p(t) · y′ + q(t) · y = g(t)

(Since p, q are not constants, the D operator won’t help.) Suppose we can find a
particular solution u(t) to the related homogeneous equation

u′′ + p(t) · u′ + q(t) · u = 0

Set y = u · v where v is an unknown function of t; substitute into (1) and show that
you obtain a first order linear equation in v′.

Problem 7.11. Use the technique of the previous problem to solve the DE

y′′ − 2

t2
· y = t5/3

given that u = 1/t is a solution to u′′ − (2/t2) · u = 0. (Note: don’t worry about
initial conditions, and feel free to choose particular constants of integration when
you need them.)

Problem 7.12. Consider the DE: t2 · y′′ + 2 · t · y′ − 12 · y = 0. Show that there
is a solution of the form y = tn. (Hint: Note that this is not a constant coefficient
problem, so the operator D is not relevant. Plug in tn as solution and solve for n.)
This equation is called an Euler-Cauchy DE 13

Problem 7.13. Many classes of polynomials that occur in applied problems are
defined by DE’s. Here are some famous examples; in each case, the subscript n labels
a polynomial of degree n. The initial values are different than what we have seen,
but they define unique polynomials in each case.

(a) Chebyshev polynomials14 (1−x2) ·T ′′n (x)−x ·T ′n(x)+n2 ·Tn(x) = 0 and Tn(1) = 1.
(b) Hermite polynomials H ′′n(x) − 2 · x · H ′n(x) + 2 · n · Hn(x) = 0 and the leading

coefficient of Hn(x) is 2n.

11Technical simplification: we’re assuming that the mass density of the buoy is 1/11 that of
water.

12This technique occurs in a paper Euler wrote when he was 21 years old.
13I have not been able to find the origin of this equation. Euler and Cauchy lived in different

centuries, so it must be the case that each of them considered such an equation independently.
14You might find it interesting that Tn(cos(θ)) = cos(nθ) for each n.
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(c) Legendre polynomials (1− x2) ·L′′n(x)− 2 · x ·L′n(x) + n · (n+ 1) ·Ln(x) = 0 and
Ln(1) = 1.

Find T3(x) and H3(x) and L3(x). (Hint: the D operator is not helpful; in each case
you are solving linear equations in the coefficients of the polynomials.)

⇐= Chapter 8 =⇒
Problem 8.1. Show that the set of differentiable functions on [0, 1] is a vector
space. (Describe the addition and scalar multiplication and quote a calculus book to
show that they obey the properties V1-V7 given for vector spaces. This is basically
a reference exercise!)

Problem 8.2. (A crazy example that illustrates the vector space properties.) Let
P be the set of positive numbers. For a, b in P , define a⊕ b = a · b; for a in P and a
real number r, define r⊗ a = ar. Show that P is a vector space using ⊕ as addition
and ⊗ as scalar multiplication. (Note: this is an exercise in very carefully writing
the properties (V1)-(V7) for a vector space and translating those properties to real
number multiplication and exponentiation.)



PROBLEMS FOR MATH 210 15

Problem 8.3. In each case, show that the given set is a finite dimensional vector
space: that it is the set of vectors spanned by a finite set of particular instances.
a) The set of polynomials of degree at most 4 having 3 as a root.
b) The set of 3× 2 matrices A such that(

1 2 −1
4 8 −4

)
· A = O2×2

c) The set of functions f(t) such that f ′′(t) + 5 · f ′(t)− 14 · f(t) = 0.

Problem 8.4. In each case, determine whether the first vector given is or is not a
linear combination of the remaining vectors in the list.
a) (−1, 1, 3), (1, 2, 3), (4, 5, 6), (7, 8, 9).
b) x2 + 5, x2 − x, x2 + 2 · x, x2 − x+ 1.
c) cos(2x), 1, sin2(x).

Problem 8.5. Show that every 3×1 matrix is a linear combination of the columns
of the matrix 1 1 −3

0 −1 4
3 2 −3


Problem 8.6. Let

A =

(
2 4 8
3 1 2

)
Which columns of A can be written as a linear combination of the others? (In each
case, show how the column is a linear combination of the others.)

Problem 8.7. Let B be a non-zero m× 1 matrix, and let A be an m× n matrix.
Show that the set of solutions to the system AX = B is not a vector space.

Problem 8.8. Let V be the (fundamental) vector space of differentiable functions
defined on the real numbers, and let W be the set of functions f(t) in V such that
f ′′(t) exists. Show that W is a subspace of V .

Problem 8.9. Let V be the vector space of all polynomials in the variable t. Let
W be the set of polynomials f(t) such that∫ 1

0

f(t) · dt = 0

Show that W is a subspace of V .

Problem 8.10. Let v be a vector in Rn. Define W to be the set of vectors w in
Rn such that w ◦ v = 0. Show that W is a subspace of Rn.

Problem 8.11. Let v1, . . . , vn be vectors in Rm. Let w be in Rm and suppose that
w ◦ vj = 0 for each j. Show that w ◦ v = 0 for every v in the span of v1, . . . , vn. Show
that the set of all such w forms a vector space.
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Problem 8.12. Let v1, . . . , vm be the rows of the m × n matrix A. Let w ∈ Rn.
Show that w ◦ vj = 0 for all j if and only if w is in the null space of A.

Problem 8.13. Which of the following are linearly independent?

(a) (0, 1, 3), (1, 3, 7), (5, 0, 1)
(b) the polynomials X2, X2 + 3, X2 − 3
(c) the functions cos(x), sin(x)
(d) the columns of an non-invertible 4× 4 matrix

Problem 8.14. Let v1, . . . , vm be linearly independent vectors in the vector space
V . Let w be a vector in V , and suppose that w is not in the span of v1, . . . , vm.
Show that w, v1, . . . , vm are independent. (Hint: write a linear combination of all the
vectors equal to O, and ask whether the scalar on w is 0, or not.)

Problem 8.15. Find a basis for the vector space spanned by these matrices(
1 2 3
4 5 6

)
,

(
−1 −2 3
1 2 1

)
,

(
−1 −2 9
6 9 8

)
Problem 8.16. Find a basis for the null space of the following matrix: 1 1 2 4

1 −2 1 3
−5 8 1 −1


Problem 8.17. Find a basis for the vector space of solutions to this DE:

y′′′ + 6 · y′′ + 8 · y′ = 0

Problem 8.18. Find a basis for the column space of this matrix. 1 7 −5 −1
−4 4 3 −1
23 1 0 2


Problem 8.19. Find a basis for the vector space in R3 consisting of vectors per-
pendicular to (−3, 1, 2).

Problem 8.20. Find a basis for the vector space of polynomials of degree at most
4 that have −3 as a root.

Problem 8.21. Let v1, . . . , vn be linearly independent vectors in some vector space.
Suppose there are scalars aj and bj such that

a1 · v1 + · · ·+ an · vn = b1 · v1 + · · ·+ bn · vn
Show that a1 = b1 and a2 = b2, and so on. (Hint: bring all terms to the left side.)

Problem 8.22. Suppose that v1, v2, v3 is a basis for the vector space V . Show that

v1 + v2, v2 + v3, v3

is also a basis for V . (Hint: make direct use of both aspects of the definition of
basis.)
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Problem 8.23. Follow the steps given to prove the following fact: let V be a
subspace of Rn and define W to be the set of w in Rn such that w ◦ v = 0 for all
v ∈ V . We can show that W is a vector space; assume that for now. Let p be the
dimension of V , and let q be the dimension of W . Then p+ q = n.

(a) Let v1, . . . , vp be a basis for V . Write each vj as 1 × n and form them into the
rows of a p× n matrix A. Then V is the row space of A.

(b) The rank of A is p. (Hint: the rank theorem.)
(c) The set W is the null space of A.
(d) The dimension of W is the nullity of A.
(e) We have p+ q = n.

⇐= Chapter 9 =⇒
Problem 9.1. Use the polynomial formula on p.140 to find the eigenvalues of the
following matrices. Then find the eigenvectors that belong to those eigenvalues. (As
noted, complex eigenvalues occur naturally.)

a)

(
1 2
2 −2

)
b)

(
0 1
2 0

)
c)

(
1 1
0 1

)
d)

(
2 4
−1 2

)
Problem 9.2. Find the characteristic polynomial, eigenvalues and a basis for each
of the eigenspaces for these matrices.

a)

2 −1 3
0 2 1
0 0 4

 b)

0 0 1
0 1 0
1 0 0

 c)

−1 6 7
0 0 2
−1 6 3


Problem 9.3. Find the characteristic polynomial, eigenvalues and and a basis for
each of the eigenspaces for these matrices. (Note: The characteristic polynomial for
(b) is λ4 − 3 · λ2 − 2 · λ.)

a)

3 1 2
0 3 0
0 1 −1

 b)


−1 0 0 0
1 5 3 −3
1 3 1 −1
1 9 5 −5


Problem 9.4. Show that the eigenvalues of the rotation matrix R(θ) are exp(±i·θ).

Problem 9.5. Show that the entries on the diagonal of a triangular matrix are the
eigenvalues.

Problem 9.6. Let A be n×n, λ ∈ C, let v be n×1, and suppose that A ·v = λ ·v.
Show that Aj · v = λj · v for each positive integer j.

Problem 9.7. Let f(t) be a polynomial, let A be n× n, let λ be an eigenvalue for
A, and let v be an eigenvector belonging to λ. Show that f(A) · v = f(λ) · v.

Problem 9.8. Let A be an n× n matrix. Then 0 is an eigenvalue of A if and only
if A is not invertible.

Problem 9.9. Let n ≥ 2 and let A be n × n with every entry 1. Show that 0, n
are eigenvalues of A. (Hint: find eigenvectors explicitly.)
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Problem 9.10. Use that det(AT ) = det(A) to show that A and AT have the same
characteristic polynomial. (Thus, they have the same eigenvalues.)

Problem 9.11. Suppose that A is n× n and that each of its columns adds up to
the same number λ. Let J be n × 1 having all its entries equal to 1, and compute
AT · J to identify an eigenvalue of AT . Conclude that A has the same eigenvalue.

Problem 9.12. Let A be an n × n matrix, each of whose columns adds up to 1.
Then there is a non-zero n× 1 matrix P such that A · P = P .

Problem 9.13. Recall the matrix

M =

(
0 1
1 1

)
associated with the Fibonacci sequence. Find an eigenvalue λ for M . Show that
λn+2 = λn+1 + λn. (Hint: use the characteristic polynomial that gives λ as a root.)

Problem 9.14. Let A be n× n and let f(t) be a polynomial such that f(A) = O.
Show that every eigenvalue of A is a root of f(t). (Hint: a previous problem involved
f(A) · v where v is an eigenvector for eigenvalue λ.)

⇐= Chapter 10 =⇒

Problem 10.1. Solve the following IVP, using the eigenvalue/eigenvector method.

d

dt

(
x1
x2

)
=

(
3 5
3 1

)
·
(
x1
x2

)
and

(
x1(0)
x2(0)

)
=

(
3
5

)
Problem 10.2. Solve the following IVP, using the eigenvalue/eigenvector method.

d

dt

(
y1
y2

)
=

(
2 −8
1 −2

)
·
(
y1
y2

)
and

(
y1(0)
y2(0)

)
=

(
4
2

)
Problem 10.3. Solve the following IVP, using the eigenvalue/eigenvector method.

d

dt

X1

X2

X3

 =

 0 1 −1
1 2 1
−3 −7 −2

 ·
X1

X2

X3

 and X(0) =

1
1
1


Problem 10.4. Show that

exp (R(π/2) · t) = R(t)

(Hint: the powers of R(π/2) repeat in a cycle of 4.)

Problem 10.5. In the albumin model discussed above, replace the constant rate
r by an oscillating rate: 74 · sin(2t), where t is time in days. Assume that c1 = 1,
c2 = 2, c3 = 3. Find a specific solution of the form x = A1 · cos(2t) + B1 · sin(2t)
and y = A2 · cos(2t) + B2 · sin(2t), where A1, B1, A2, B2 are constants. (The general
solution will decay toward this specific solution.)
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Problem 10.6. In the model of the two masses held by three springs, let m1 = 1,
m2 = 2, k0 = 1, k1 = 4, k2 = 2, h0 = 1, h1 = 2, h2 = 1. Find the equilibrium. (The
answer will involve c.) Show that the force of spring 0 on mass 1 is the same as the
force of spring 1 on mass 2.

Problem 10.7. We have three chemicals A,B,C in a common medium. Substance
A turns into substance B at a rate proportional to the amount of A; substance B
turns into C at a rate proportional to the amount of B; substance C turns into A
at a rate proportional to the amount of C. Find a system of DE’s describing the
amounts of each chemical. Show that 0 is an eigenvalue of the coefficient matrix,
and show that its eigenvectors are equilibria.

Problem 10.8. The picture below depicts an energy grid, as in the problem on
p.9. The numbers A,B are constant temperatures, and the xj change in time. The
rate of xj is equal to the sum of the differences y − xj where y is a node connected
to xj. (So y can be A or B or one of the other xk.) Write down the system of DE’s
that arises. You might be interested in the eigenvalues of the coefficient matrix;
we suggest using numerical software to estimate them. You will see that they are
negative, and it follows that the solutions drift toward equilibrium.

x3 x4 B

A x1 x2

⇐= Chapter 11 =⇒
Problem 11.1. Let P2 be the vector space of polynomials of degree at most 2.
Compute G−1(2 · t+ 3 · t2) where G is the coordinate transformation for each of the
bases listed. (Thus, you will compute a different G−1(2 · t+ 3 · t2) each time.)
a) Use the basis 1, t, t2;
b) Use the basis 1 + t, 1− t, t+ t2;
c) Use the basis 1− t, t+ t2, 1 + t.

Problem 11.2. Let f : U → V and g : U → V be linear transformations (so we
are asserting that U, V are vector spaces). Define the function f+g in the usual way:
(f + g)(u) = f · u+ g · u for all u in U . Show that f + g is a linear transformation.

Problem 11.3. Let f : U → V be a linear transformation and let α be a number.
Define α · f as a function from U to V by (α · f) · u = α · (f · u) for all u in U . Show
that α · f is a linear transformation. (Note: this problem and the previous one go
a long way toward the following fact: the set of linear transformations from vector
space U to vector space V forms a vector space!)

Problem 11.4. Let P3 be the set of polynomials of degree at most 3, and P2 those
of degree at most 2. Let D : P3 → P2 be differentiation, and let J : P2 → P3 be
defined by J · f(t) =

∫
1
f(t) ·dt. Show that D ·J · f(t) = f(t) for all f(t) on P2. Find

g(t) in P2 such that J ·D · g(t) 6= g(t).



PROBLEMS FOR MATH 210 20

Problem 11.5. (Continuing the previous problem.) Use the natural bases for P3

and P2, and find the matrix D̂ that represents D and the matrix Ĵ that represents
J . Show that D̂ · Ĵ = I3 and that Ĵ · D̂ 6= I4.

Problem 11.6. Let V be the vector space of functions (a+ b · t+ c · t2) · e3t, where
a, b, c are arbitrary real numbers. Find a matrix that represents taking the derivative
on V .

Problem 11.7. Consider the operator polynomial Q = D2 + D − 6. Let V be
the vector space of functions of the form (a + b · t) · et, where a, b are arbitrary real
numbers. Show that if v is in V , then Q · v is in V . Find a representing matrix for
Q and show that it has an inverse. Use the matrix inverse to solve the equation

y′′ + y′ − 6 · y = t · et which is Q · y = t · et

Problem 11.8. Let L0, L1, L2 be the Legendre polynomials found on page 13. Use
these polynomials as a basis for the space P2 of polynomials of degree at most 2. Let
D : P2 → P2 be the differential operator, as usual. Find a matrix A that represents
D in this context. Show that A3 = O3×3. (This last equation says that the third
derivative of a quadratic polynomial is 0.)

Problem 11.9. Let r : R2 → R2 be reflection about the line y = −2 · x. Find the
2× 2 matrix A such that A · p = r · p for all p in R2. Show that A2 = I2.

Problem 11.10. Let V3 be the vector space of functions (a + b · t + c · t2) · e−t,
where a, b, c are arbitrary real numbers. Let V2 be the vector space of functions
(a+ b · t) · e−t. Show that the operator polynomial D + 1 maps V3 to V2. Using the
natural bases of V3 and V2, find the matrix that represents D + 1.

Problem 11.11. Let L : U → V be a linear transformation. Define W to be the
set of u in U such that L · u = OV . The set W is called the kernel of a linear
transformation of L. Show that W is a subspace of V . (How do you tell that a
subset is a subspace? A proposition in the text on p.121 is relevant.)

Problem 11.12. Let L : V → V be a linear transformation (note that the vector
space V is mapped to itself). For a real number λ, we say that λ is an eigenvalue
of L if there is a non-zero vector v such that L · v = λ · v. Let A be a matrix that
represents L. Show that A’s real number eigenvalues are eigenvalues of L.

Problem 11.13. Let V be the vector space spanned by e2t, t·e2t, and letD : V → V
be differentiation, considered as a linear transformation. Find the eigenvalues and
eigenvectors for D.

⇐= Chapter 12 =⇒
Problem 12.1. Go back to all the matrices for which we have computed eigenvalues
and eigenvectors; determine which matrices are d’ble and which are not. (Note: use
the second test, which involves looking up the dimension of each eigenspace and
comparing to the algebraic multiplicity.)
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Problem 12.2. Let D be a diagonal matrix. Show, for each positive integer k,
that Dk is diagonal, with Dk[j, j] = (D[j, j])k for each j.

Problem 12.3. Let P be an invertible n×n matrix and let E be an n×n matrix.
Show, for each positive integer k, that(

P−1 · E · P
)k

= P−1 · Ek · P
Problem 12.4. (Continuation of the previous problem.) Show that

P−1 · exp(E) · P = exp(P−1 · E · P )

Problem 12.5. (Continuation of the previous.) Let

E =

(
−5 2
10 3

)
Use eigenvectors to find a 2× 2 matrix P such that P−1 ·E ·P is diagonal. Now use
the previous problem to compute exp(E).

Problem 12.6. Let A be a d’ble n×n matrix such that |λ| < 1 for every eigenvalue
λ of A. Show that Ak → On×n as k → ∞. (Hint: Use the previous problem. Note:
the limit holds even if A is not d’ble, but it’s harder to prove.)

Problem 12.7. Recall that an n × n matrix A with real entries is symmetric if
AT = A. It turns out that every symmetric matrix is d’ble. Show that this is true
for an arbitrary 2 × 2 matrix. (Hint: if the eigenvalues are distinct, the matrix is
d’ble. How could there be a repeated eigenvalue?)

Problem 12.8. Let

F =
1

3
·

 1 −4 4
−2 −1 4
−2 −4 7


Compute the limit of F n as n → ∞. (Hint: if λ is an eigenvalue of M , then λ/3 is
an eigenvalue of M/3, and M/3 has the same eigenvectors as M/3.)

⇐= Chapter 13 =⇒
Problem 13.1. (One-dimensional diffusion with insulated ends.) Given L, c and
f(x), solve

Ut = c2 · Uxx
U(x, 0) = f(x) for 0 ≤ x ≤ L

Ux(0, t) = 0 = Ux(L, t) for t ≥ 0
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Problem 13.2. (The plucked string problem associated with the one-dimensional
wave equation.) Given positive constants L, c and a differentiable function f(x) on
[0, L], use separation of variables to find U(x, t), defined for 0 ≤ x ≤ L and t ≥ 0,
such that

Utt = c2 · Uxx
U(x, 0) = f(x) for 0 < x < L

Ut(x, 0) = 0 for 0 < x < L

U(0, t) = U(L, t) = 0 for t ≥ 0

Problem 13.3. (A two-dimensional diffusion problem.) Let L, c be positive con-
stants. Let f(x, y) be defined on the square (x, y) with 0 ≤ x ≤ L and 0 ≤ y ≤ L.
Find U(x, y, t), where 0 ≤ x ≤ L and 0 ≤ y ≤ L, and t ≥ 0 such that

Ut = c2 ·
[
Uxx + Uyy

]
U(x, y, 0) = f(x, y)

U(0, y, t) = U(L, y, t) = U(x, 0, t) = U(x,M, t) = 0

Problem 13.4. (Laplace’s equation on a disk.15) We are given a differentiable and
2π-periodic function f(θ). Find W (r, θ), defined for 0 ≤ r ≤ 1 and all θ such that

W (r, θ + 2π) = W (r, θ)

r2 ·Wrr + r ·Wr +Wθθ = 0

W (1, θ) = f(θ)

(Recall that the PDE for W is the polar version of Laplace’s equation.)

Problem 13.5. Let n be an integer. Show that Un(x, y) = (x+ iy)n + (x− iy)n is
harmonic16 (that it satisfies Laplace’s PDE). (Note: i2 = −1, as usual. Assume you
can use the usual differentiation rules even with i. You might like to compute U by
multiplying out in the cases n = 1, 2,−1.)

Problem 13.6. (This problem shows that we cannot necessarily take the derivative
of a Fourier series term by term, the way we do for Taylor series.) Find a sine series
for the function x on [0, 3]. Take the derivative of the sine series term by term,
and plug in x = 3/2; show that the resulting series cannot converge. (Hint: the
Divergence Test.)

Problem 13.7. Find a cosine series for the function 1− x2 on [0, 2].

15This is another Dirichlet Problem.
16If an is a sequence with radius of convergence r, then U(x, y) =

∑∞
n=0 an · Un(x, y) defines a

harmonic function inside the circle x2 + y2 = r2. Thus, every such sequence defines a solution to
Laplace’s equation. That’s a lot of solutions!
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