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ralasian famous paradox runs as follows.
et of abstract objects or the set of i
1selves. Other sets, like the set of U
over the Thames, are not. What abo

It seems that some sets,
nfinite sets, are members
.S. Senators or the set of

€ is a natural assumption underlying Russell’s paradox:
ssumption that every predicate has an extension. Call this
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€ variables range over sets, and @ stands for any predicate.
ample, if we put the predicate ‘bridge over the Thames’ for ®,
Comprehension guarantees a set of bridges over the Thames.
rtain substitutions for ¢ lead to trouble, In particular, put ‘x¢x’
and we are landed in Russell’s paradox.

$ easy to slide, as we have just done, between two distinct
ns of Russell’s paradox, one in terms of sets and one in terms
nsions. In my view, sets and extensions provide very different
$ for Russell’s paradox. It is far from clear that a resolution
Paradox in one setting carries over to the other. In this paper,
'l explore the differences between sets and extensions. And [
PIOpose a new approach to Russell’s paradox for extensions.
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1 T THEORY o i
I. ZF'SE ox. For one thing, we expect a well-defined predicate to have

ti Zermiel6-Fdeiea] Vset e O () PSRl s widd® nsion. Ip particular, we expect the self-identity predicate to

received set theory — Naive Comprehension is abandoned in fayg i

of the axiom schema of Separation: sion of "x=x". Or again, since ZF provide a clearcut concept

we expect the predicate ‘set’ to have an extension — and

VZAyVx(xey <—s xez&qx) it doesn’t. Note further that in ZF we quantify over sets,

Given a predicate ¢, we are no longer guaranteed a set of elemep s
that are ¢; rather, given a set z, there is a subset y of those membe:_
of z that are ¢.! In particular, given any set z, there is a subset of
those members of z that are non-self-members. But there is no set
of all the non-self-membered sets, on pain of contradiction.
ZF embodies to a degree a certain conception of set. Think of a
set as formed this way: we start with some individuals, and collect.
them together to form a set. Suppose we start with individuals at the
lowest level. At the next level, we form sets of all possible combin-
ations of these individuals. And then we iferate this procedure: at
the next level, we form all possible sets of sets and individuals from
the first two levels. And so on. In pure set theory we start with no
individuals, just the empty set. Given the set of all sets at a particula -_
level, the next level will contain the members of its power set. Every.
set appears somewhere in the hierarchy. This conception of set is the
combinatorial or iterative conception.? '
We can see how the Separation Axiom fits this picture. Givena
set at some level of the iterative hierarchy, at the same level the %
will be the set of all its members that are ¢.> But Naive Compre_heﬂ*
sion is false on this picture. Put the predicate ‘set” or the pred1cate
‘x=x’ for ¢ in the schema. Either instance is false: there is no S¢t
that serves as the extension of these predicates. At no level 0{ ‘thG:
hierarchy do we reach the universal set of all sets; it is just "t0%
big”. So Cantor’s paradox is avoided.* And so is Russell’s, becal_ls
there is no set of exactly the non-self-membered sets. According

\ g : ; i ] 0
to the combinatorial/iterative conception, no set is a member 02

itself. (No set can collect or ‘lasso’ itself.)® So the Russell set ‘
it existed, would be the universal set. But there is no universal set !
the iterative hierarchy. _ ol

Now ZF provides a set-theoretical basis for mathematics —

. . X
we may wonder if we have a satisfactory resolution of Russel

)" all the sets in the ZF hierarchy, and form a collection of them

There are (at least) two avenues we might explore here. We might

ate the prospects for a set theory with a universal set. In his
n New Foundations (NF), Quine takes this first way.” Or we
t admit collections that are not sets, following Cantor and von
ann. We will explore these two avenues in turn.

II. SET THEORY WITH A UNIVERSAL SET

ioms of Quine’s NF are the axiom of Extensionality and
10m schema of Naive Comprehension restricted to stratified
hces: that is, any occurrence of ‘e’ must be flanked by variables
onsecutive ascending indices. This is very reminiscent of the
le theory of types, but one has to be careful not to push the
:e_l'tc')o far.® In the simple theory of types, a formula has to be
:‘_ed 1n order to be well-formed. In Quine’s NF, stratification is
necessary condition of well-formedness — Quine separates the
“formedness of formulas from the stratification condition. We
ko @Vengbe able to prove the existence of sets given by unstratified
las.” But if we are to prove the existence of a set directly from
prehension schema, the instance must be stratified. Since
: UI_a X=x" is stratified (vacuously so, because ‘e’ does not
AL In 1t), we can prove the existence of a universal set directly
I the comprehension schema.
(foes NF avoid the paradoxes? Russell’s paradox is avoided
X#x’ is unstratified. Cantor’s paradox is generated by a
0al argument: given a set X and its power set p(X), we assume
on f from X onto its power set p(X), and consider the set
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{yeX|y#f(y)}. But the formula ‘yé1(y)’ is unstratified, and so the
diagonal proof breaks down. \

So NF embraces a universal set while dodging the paradoxes. But
there is a heavy price to pay. One significant cost is the failure of
mathematical induction.!® And there are other problems. Following
Rosser, call a set Cantorian if it is of the same size as the set of
its unit sets. We expect sets to be Cantorian, but in NF there are
non-Cantorian sets. The universal set V is one. Cantor’s theorem
does not hold for non-Cantorian sets; this is clear in the case of
V. which is its own power set. And non-Cantorian sets produce
other anomalous effects. We expect the relation of less-to-greatey
among cardinal numbers to be a well-ordering — but Specker proved
that this relation is not a well-ordering in NF, because of the. non-
Cantorian sets.!! Now in NF cardinal numbers are construed in the
Frege-Russell way (according to which, for example, the number
3 is the class of all three-membered classes). And the prO(_)f that
the Frege-Russell cardinals are well-ordered rests on the Ax10m.0f
Choice. So Specker’s proof also shows that the Axiom of Choice

ils in NE.
i These difficulties are substantial. Quine himself abandoned NF,
and took instead the second avenue — his sub§equent system ML
distinguised sets and ultimate classes. There is anyway a fu?ther
matter: although NF supplies a set as the extens.mn of the pre.dwate
‘x=x’, it does not supply extensions for certain other predicates,

. s 12
like ‘x is a non-self-membered set’ and ‘x is well-founded’.!? If :

we concede that these predicates have no exte.nsion, then we loseczi
primary motivation for a set theory with a um\fersal set: to Fe‘speis
the intuition that every predicate has an extension. The mtultn:)nof
respected for the predicate ‘x=x’, but not for others. Thc? systemst A
Church and Mitchell — two other set theories with a universal se
r the same limitation.'? .

Suflfistead of abandoning a universal set, we might admit that thfﬁ
are subcollections of the universal set V (for example, the collecilhat
of non-self-membered sets, the collection of Well—foun,ded §etS) o
are not sets. Here one might draw on Vopénka and Héyek’s noiset
of a semiset.'* A semiset is a subclass of a set, and a proper sem

: : jverl
is a subclass of a set that is not itself a set. Semisets are gi

i : eoty
via properties and predication.'® So, in the context of a set th
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h a universal set, we might admit as semisets the collections
en by the predicates ‘xgx’ and ‘x is well-founded’, where these
nisets are subclasses of V that are not themselves sets.'® But now
‘re really taking the second avenue: we are drawing a distinction
ween collections that are sets and those that are not,

HI. SETS AND CLASSES

melo himself drew a distinction between two kinds of collection,
east implicitly: “Set theory is concerned with a domain B of
duals, ...among which are the sets”,!” but “the domain B is
self a set”.'® The distinction can be traced back to Schrider
antor.'? Cantor drew the distinction this way:

€ start from the notion of a definite multiplicity of things, it is necessary, as

vered, to distinguish two kinds of multiplicities (by this I always mean
finite multiplicities),

I a multiplicity can be such that the
ogether” leads to a contradiction, so that it is impossible to conceive of the

plicity as a unity, as “one finished thing”. Such multiplicites I call absolutely
Or inconsistent multiplicities. .

AFon the other hand the totality of the elements of a multiplicity can be thought

of without contradiction as “being together™, so that they can be gathered together
> one thing”, I call it a consistent multiplicity or a “set” 20

Or's immediate concern was Burali-Forti’s paradox, generated
ordinals. What the Burali-
contradiction shows, according to Cantor, was that all ordinals
an “inconsistent, absolutely infinite multiplicity” (op. cit.,
L15). Itis a multiplicity, but it is not a set.

The sharper modern distinction is between classes and sets.
Ie is g class, but not a set, of all ordinals; and there is a class
'L S€ts and a class of all non-self-membered sets, but no such
Yon Neumann writes of his axiomatization of set theory:

> present set theory deals even with sets (or

- Rather than being completely prohibited, they
g arcuments. .

“functions”) that are “too

are only declared incapable
- This suffices to avoid the antinomijes 2!
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And a little later in the paper, von Neumann switches to the
terminology of “sets” and “classes’™

| “sets” are the sets that (in the earlier terminology) are “not too big”, and
“classes” are all totalities irrespective of their “size”. A class is “capable of being
an argument” if and only if it is a set.?2

So for von Neumann all sets are classes, but not all classes are sets,
And those classes that are not sets — the so-called proper classes —
cannot themselves be members. The mere admission of the exist-
ence of, for example, a collection V of all sets does not generate
paradox. A further assumption is needed, that V can itself be g
member (and in particular a member of itself), and this assumption
is false for von Neumann’s proper classes.

We can formulate an Axiom of Comprehension for classes as

follows:
JAVX(xeA <— @X),

where A is a variable ranging over classes, x is a variable ranging

over sets, and there is the following restriction on ¢: ¢ does not}

contain quantifiers over classes. ¢ can contain class variables (o
parameters), but these must not be bound.?* Comprehension for
classes guarantees the existence of a class of all sets (put ‘x=x" for
¢) and the existence of a class of exactly the non-self-membered sets
(put ‘x¢x’ for ¢). And similarly there is a class of all ordinals and
class of the well-founded sets. If we suppose these classes to be sets;
paradoxes ensue. But in von Neumann’s system, the arguments thal
led to paradox instead establish that these classes are proper classes:

And we cannot generate a new family of paradoxes for classes. N0|
proper class can be a member, and so no class can have a propel]
class as a member. In particular, there can be no class of all classti&'
and no class of all the non-self-membered classes.

In von Neumann’s system, then, there are extensions 107
the predicates ‘set’, ‘hon-self-membered set’, ‘well-founded Set’:
‘ordinal’; there is a well-determined collection of all the ZF sets; aﬂd_
there is a domain for quantification over sets. Further, the Axiom ¢
Choice is provable in von Neumann’s system.24 But these benefi®
are costly, both technically and intuitively. The price is technicall
high because it is provable that in von Neumann’s system one canﬂol;

L
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prove all instances of the induction schema.?S And the price is int
jtively 1:11gh,_ for at least two reasons. First, it seemspad hoc I;uci
counterintutive to say that a proper class cannot be a member Wi’i1
for ex_ample, can’t we form its unit class? More generall tf.le bay,
on finite classes of proper classes does not seem well—mg}ivated ;
finite classes do not generate paradox.?® And if the class and all 't‘
subclasses exist, then why doesn’t its power class exist t00? Seco 1dS
we expect the predicate ‘class’ to have an extension ju.st as o
prcct the predicate ‘set’ to have an extension. Moreovér since e
Neumann quantifies over proper classes, we seem to requi,re suc; i
extension to serve as the domain of quantification.?” But accordirz:n
to von .Neumann’s system, there is no class (nor any other kind %’
collection) of all classes. The problem has just been pushed b E'
we are left again with a clearcut concept — now, the ¢ an af: -
— which has no extension. ’ Cid il
Von Neum'fmn’s system has been liberalized in various ways, A
natural move is to ease the restriction on ¢ in class compreh i
;)g admltt;ng class quantifiers, a move that has been madg by eWn:i]Ogn
orse i j
B e L
. s. But still a class ¢
be a member — again we cannot even form the unj B
e ' : e unit class of a proper
L Canslt.l]il thfI:.re 1s no extension for the predicate ‘class’.
1bera i i
classes are membelrzt? Iil(])ﬁ}(:zinagn ig\? Velt0 pl SgSStemS £ Wthh S
notion of a hyperclass, via the schem};:e Akl et

There is 3 hyperclass whose members are all classes (and sets) that are 7]
.‘;)Vrlzzl tqoalst; \:l;l_rfstl‘lﬁted.zg Apd we can go further still. Lévy et
e e I1er }tl eory, WIFh sets 1n the lower tier and classes
1 Cla.ssn tV € upper ftier, we find the class V of all sets,
B o JAA a,nd ppV, and so on.?? These power classes
e (Il'ma_nn S system of classes.’! Since such systems
b« membe;s i fe without falling foul of the paradoxes, the ban
;o I}:e ‘or Prgper classes seems not just counterintuitive,
. cessarily heavy-handed response to the paradoxes.
nly a ban on self-membership (and more generally on

Mfoun i
¢ ded classes) — and the ban is preserved even in these liber-

dlize i i
d systems. And with this ban we still pay the same high price:

U
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there is no class of all classes, no domain for quantification over
classes, and no extension for the predicate ‘class’.

IV. EXTENSIONS

We have discussed a wide variety of set theories and class
theories. Setting aside their various technical difficulties, there is
one persistent failing that they share — they fail to provide an exten-
sion for certain predicates. They fail to do justice to a conception of
set quite different in spirit from the iterative/combinatorial concep-
tion. The alternative conception goes like this: to any predicate that
denotes a well-determined condition or concept (in Frege’s sense),
such as the predicates ‘abstract’ or ‘set’ or ‘class’, there corresponds
the collection of those things to which the predicate applies — the
collection of abstract things, the collection of sets, the collection of
classes. Call this the predicative conception — and call the collection
of things to which a given predicate applies the extension of the
predicate.

Itis clear that Frege would be quite opposed to the combinatorial
conception of set embodied in ZF. Frege writes:

I do, in fact, maintain that the concept is logically prior to its extension; and I
regard as futile the attempt to take the extension of a concept as a class, and make
it rest, not on the concept, but on single things.32

And again:

...[T]here cannot be an empty class if we take a class to be a collection or totality
of individuals, so that ... the class consists of individuals or individuals make up
the class. In the course of this discussion we have once more had it shown (0
us that this way of talking is logically useless; that the extension of a concept is
constituted in being, not by the individuals, but by the concept itself; i.e. by what
is asserted of an object when it is brought under a concept.??

An early discussion of these two conceptions — the iterative/
combinatorial and the predicative — can be found in Konig.3* For
reasons tied to his mistaken belief that the continuum cannot bé
well-ordered, Konig distinguished between two kinds of classes:
As an example of one kind, consider the continuum, defined by
Koénig as the set of denumerably infinite sequences (aj, as, ...ak
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..) of positive integers. Ko6nig points out that since there are non-
“denumerably many of these sequences, they cannot all be defined by

Jinguistic expressions, of which there are only denumerably many.

!Accordingly, Konig rejects the idea that we must define or describe
aset before it can be said to exist; he works instead with the combin-
atorial idea. According to Konig, the elements of the continuum are
i rined by distinct combinations of the positive integers:

g8t

rough the stipulation that a;, as, ...are to be replaced by definite positive

integers, it becomes a “definite” sequence, an element of the continuum, which

ot become an object of our thought without being conceptually distinct from

‘other element. The further stipulation that we consider the totality of these
-distinguished” objects then leads to the continuum.3%

- Konig goes on to consider, by way of contrast, Cantor’s second
mber class, defined by “the totality of all order types of well-
ered sets of cardinality &,”.3° According to Konig, there is a
cial difference between the two classes: the continuum is given
ombinatorially and its members are “well-distinguished”. But the
ond number class is given by a property or notion;

elements’ are determined by the property of being order types of well-ordered
$ of cardinality Xo. To be sure, we know such elements: @, w+l, ...; but
property is only an abstraction, at best a means of distinguishing between
¢ts belonging and not belonging to the class; however, it is certainly not
le according to which every element of [the second number class] can be
rmed. What is primary, or fundamental, here is the collective notion, which for
§ very reason, following Cantor’s nomenclature, I would not call a “set” but a
$87; it is only afterward that elements belonging to the class are constructed
exemplify this notion.3’

Onig’s view, the second number class “cannot be considered to
completed set, that is, a totality of well-distinguished elements
are altogether conceptually distinct”.3® Rather, it is a “‘set
the process of becoming’ .3 According to Konig, the same
be said of the classes that lead to paradox, like the class of
nal numbers.*? Kénig concludes that “the distinction here drawn
ween ‘set” and ‘class’ completely resolves the paradoxes” 4!

Konig’s incomplete classes might remind us of Cantor’s “incon-
tent multiplicities” that cannot be regarded as one finished thing.
U Konig’s and Cantor’s views of classes seem to be orthogonal.
g ording to Cantor, the mark of a class that is not a set is that it
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is “absolutely infinite” — it is “too big” to be a set, to put it in vop
Neumann’s terms. Cantor points to the size of the class, and not tq
any failure to distinguish between its members % for Cantor, evep
inconsistent multiplicities are “definite”. For Kénig, on th§ otl.ler
hand, a class fails to be a completed set not because of }ts Size
but because its members are not properly distinguisheFl. ‘Notl(.:e that
the second number class is not “too big” to be a set: it is nether a
Cantorian inconsistent multiplicity nor a proper class. According to
Konig, it fails to be a completed set bec.:ause its e.:le_men.ts are deter-
mined by a property, and a property w1l_l onl‘y dl_stlngulsI} b'etwe'en
objects in the class and those outside it — it will not distinguish
between elements of the class.*? ‘ :

So Konig, like Frege, recognizes two distinct conceptions of sets:
the combinatorial and the predicative. But there the agreement ends.
In Konig’s view, it is only the combinatorial cc?ncepuon that guar-
antees a completed set of well—distingqished ob;ects. But according
to Frege, it is the predicative conception thgt is fpndamenta!, an.d
the attempt to base set theory on the combinatorial conception is
“futile”.

V. SETS, CLASSES, EXTENSIONS

We now have in play three types of collections: sets, classgs, and
extensions. Is any one of these primary? Is th(?re one to w}nch th;
others can be reduced? Are there distinct intuitions underlying eac
(? .
typ‘;}e can take ZF sets to be collections conceived of iteratlyelz
or combinatorially. And we can take extensign§ as COHeCt'lOrflls
conceived of predicatively. There are clearly distinct conceptio
here. Does one reduce to the other?*? .
We cannot reduce extensions to ZF sets: as we have S?:ns,
there are predicates of ZF (like ‘x=x" and ‘x£x’) whqse extenst .
cannot be sets. And even if, for the moment, we thmk. of prZI;ts
classes as glorified sets, still extensions won’t be reducible to

i ion for
i i n extension f
— no system incorporating proper classes provides a

) > E] i sgI
‘class’ or ‘non-self-membered class’. Quine’s NF does provide 2

i emain oth
as the extension of ‘x=x’, but as we have seen, there r

predicates (like ‘x#x’) whose extensions cannot be sets of NF.
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‘Moreover, it is natural to suppose that some extensions are
mbers of themselves — for example, the extension of the predicate
ystract” is itself abstract, and the extension of ‘infinite extension’
jitself infinite. But, as we $aw, no set of ZF is a self-member —
undation is a part of standard set theory.** And I am not aware of
¢ system with classes as well as sets that allows self-membered
per classes.
n the other hand, we cannot reduce Sets to extensions. We saw
that the iterative hierarchy is generated by the power set operation.
nd the assumption that, given a set, there exists a set of all its
ts, is not at all underwritten by the notion of predication: we
not require a predicate or a rule for determining each subset.
d, on certain natural assumptions, we have to give up the idea
every set is determined by a predicate. For if we assume that in
ven language there are denumerably many predicates, then the
nbers of a nondenumerable set will outrun the predicates. More
erally, if we suppose that the predicates of a language always
A 4 set of some cardinality, then, since there will always exist
I greater cardinality, sets will always outrun predicates. This
S @ moral of Konig’s discussion: the combinatorial conception
ds sets that the predicative conception does not.
this regard, consider also the Axiom of Choice. When in
Zermelo proved the Well-Ordering Theorem (that every set
well-ordered), he made fully explicit his reliance on the
1om of Choice, “the principle that even for an infinite totality
On-empty] sets there always exist mappings by which each
Corresponds to one of its elements” * We can think of these
Ppings as functions that ‘choose’ an element from each set in the
lity, yielding a ‘choice set” as output. Zermelo’s proof met with
; €diate opposition because it assumed the existence of mappings
Choice sets without defining them 46
Wever, if we adopt the iterative conception such worries about
iom of Choice seem quite misplaced. Consider a totality of
“mpty sets. There will be some level of the iterative hierarchy
ich all these nion-empty sets appear, and at this same level aj]
associated choice sets will also appear, since their members all
at lower levels. Again sets outrun the expressive capacity of
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our language — there are sets which are not finitely definable, sets
for which we cannot supply a rule or a law.

So I think we should regard extensions and sets as independent
notions. They embody quite different ways of thinking about collec-
tions. We might regard them as primitive notions, or perhaps ag
alternative, mutually irreducible conceptions of the more genera]
notion of collection.

The same cannot be said of proper classes — it seems that there
is no further distinct intuition behind these collections. It may be
that proper classes are in part motivated by the predicative concep-
tion — for example, we may want an extension for the well-defined
predicate ‘set’ and invoke a proper class to do the job. But Fhere is
no new intuition here — and anyway the predicative conception will
not be accommodated by proper classes, since proper classes cannot
serve as the extension of certain predicates (e.g. ‘class’). Extensions
cannot be reduced to proper classes. .

And proper classes cannot be reduced to extensions. Proper
classes are at least in part motivated by the iterative/combinatorial
conception. Von Neumann writes:

... If we make the sets that are “too big” and incapable of being arguments capablle
of being arguments in a new system P, we can still circumvent the antinomies if in
turn we admit the sets that are formed from all of these and are “still bigger” (that
is too big on P) but declare them incapable of being arguments. The idea is partly
the same as the one upon which Russell’s “hierarchy of types” rests. (p. 404)

The idea is that we can expand our system containing pl“opef ‘
classes to a system P in which they are members of still bigger
classes which, in the system P, cannot themselves be members. And

presumably we can keep going in this way. This should remind uS

of Lévy’s discussion of hyperclasses, and the existence in Acket
mann’s system of V, pV, ppV, etc. These systems treat prOPB:
classes in the same iterative way that ZF treats sets. Proper class®

now look a lot like sets, occupying sufficiently high levels of ;l:;‘

iterative hierarchy.*’” We can think of proper classes as an extra la

or series of layers of sets. And if we think of proper classes that ways

then they are reducible to sets.
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VI. EXTENSION AND PARADOX

m right that the notions of ser and extension are independent
] mutually irreducible, then we have two quite different settings
ussell’s paradox. Since sets are generated iteratively, there is no
versal set. And since no set is a self-member, there is no Russell
of non-self-members because there is no universal set, Russell’s
dox does not arise. Parallel remarks hold for classes, including
er classes: there is no class of all classes, and there are no self-
mbered classes, and consequently no Russell class of non-self-
mbered classes.

But the parallel breaks down in the case of extensions. Even if
here is no universal extension, we must admit self-membered exten-
ns (like the extension of ‘abstract’) as well as non-self-membered
sions (like the extension of ‘teaspoon’). And a paradox is
ierated when we ask whether the extension of ‘is a non-self-
bered extension’ is self-membered or not. We need a way out
ussell’s paradox for extensions. And, since extensions are not
ucible to sets or classes, our best strategy is to develop a direct
ount of extensions.

In what follows, I shall take extensions to be extensions of predic-
$. And I shall take Russell’s paradox to present a challenge
our basic concept of extension, just as the Liar paradox chal-
2€s our basic concept of truth. In my view, neither the Liar nor
ell’s paradox for extensions is a technical problem restricted
) formal languages. If a theory is to resolve the Liar, it must
theory of our basic notion of truth; and if a theory is to
Y€ Russell’s paradox for extensions, it must be a theory of our
1on of extension, tied to the predicates of our language. It is
~Bnglish that we express our intuition that the ZF concept of
*Lmust have an extension; and it is in English that we formulate
*II’s paradox for extensions. English (or Spanish or ...) is the
age in which we discuss alternative set theories, and employ
s like set, class, proper class, virtual class, and so on, and in

' We express the intuition that a well-defined pedicate has an
Sion,
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Consider a simple paradox for extensions, expressed in ordinaIy
English. Imagine that I am confused about my whereabouts, ang.
wish to refer to predicates I believe to be written on the board nex
door. I write on the board the following two predicates: :

(1) moon of the Earth _ :
(2) unit extension of a predicate written on the board in room 213 ‘ vio ) .
Caldwell Hall at noon 7/1/98. ; problematic: its only member is ext(1). That is-

) does not have a well-determined extension.

(2) does not have a well-determined extension, it does not
a unit extension. In contrast, ext(l) is a unit extension. So
ly unit extension of a predicate written on the board in room
dwell Hall at noon 7/1/98 is ext(1). Consider the underlined

I am myself in room 213. The extension of (1) — ext(l). for short — 1§ ) has a well-determined extension.
clear enough. It has one member, so it is a unit exter.lsmn. But what
about the extension of (2)? To determine its extensmn., we look gt
each predicate written on the board, and see whether 1t.s c?xtension'
is a unit extension. Ext(1) is a unit extension, so ext(1l) is in ext(2),
Is ext(2) in ext(2)? Suppose so; then ext(2) has 2 members, and so
is not a unit extension, and so is not in ext(2). Suppo.se not; the‘
ext(2) has 1 member, and so is a unit extem.‘.io.n, and so is a memb?_,‘ _ _ .
of ext(2). Either way we obtain a contradiction: we are landed 1_ eading to (R) appears to be valid
paradox. R i€ reasoning is natural, we should not block it by artificial, ad hoc

Let us take a closer look at the paradox. In general, we give
membership conditions for extensions via the schema

ow this reasoning calls for explanation.*® (2) and (2%) are

ate tokens of the same type, and yet one has a determinate
nsion and the other does not. When we tried to determine an
1sion for (2), we were landed in contradiction. But an extension
2*) is readily obtained. How can we explain the difference? We
suppose that we are confronted with a strengthened paradox,

preserves its validity and the truth of (R).
e puzzle is this: (2) and (2*) are composed of the Very same
 With the very same linguistic meaning, yet one is pathological
1€ other is not. A shift in extension without a shift in meaning
ts some pragmatic difference between the two tokens. And
1€ a number of differences between their respective contexts.
are differences of time and place and perhaps speaker too.
familiar contextual parameters of speaker, time, and place
Ot tell the whole story.

nother difference is that the two tokens are embedded in
CIent stages of the strengthened discourse. We may split the

IS€ into two stages. At the first stage I produce the predicates
1d (2), and we argue to the subconclusion (P); at the second
We reason from (P) to (R). In general, the correct interpret-
PLOf an expression or g stretch of discourse may depend on the

X 1s in ext(e) ift x is ¢,

where ¢ stands for a predicate. An instance of this schemais:

5 ! il
ext(2) is in ext(2) iff ext(2) is a unit extension of a predicate written on the board
in room 213 Caldwell Hall at noon 7/1/98.

This instance is utilized in the reasoning that generated paradox. i ;
start by supposing that ext(2) is in ext(2): we suppose that l;t,hes s-
hand side of the biconditional holds. So ext(2) has two mem ;(f) 121
the right hand side does not hold. So the left hand does not | F.
contradiction. Now suppose that ext(2) is not in ext(2); that 18,0 i
the left hand side does not hold. Then ext(Z).has one member, esha -.,
right hand side holds. And so the left hand side holds — and W
radiction again. o
i Cgltl)twe cannot%ietennine an extension for (2), be(?ause we 1‘3‘;‘;2
consistently give it self-membership conditilons. (2)isa paﬂ;i(; i
predicate, in the sense that (2) cannot consistently be supp _
an extension. That is, we may conclude:

b

€ second stage starts out from a subconclusion, namely (P),
hEd by the first stage of the argument. We can think of the
Stage as reflective with respect to the first: at the second stage



L LT AL S UVHVILIN G

SETS, CLASSES AND EXTENSIONS 125

of the reasoning, we reflect on (2)’s lack of a well-determined exten-
sion, established by the first stage. This logical order constitutes:a
difference in the relation that each stage of the discourse bears to the
discourse as a whole. '

A further difference is found in speaker’s intentions. At the two!
stages of the reasoning, there are different intentions towards (2), Ay
the second stage, our intention is to treat (2) as pathological and seq
where that leads us. But when I first produced (2) I had no intentiop
of producing a pathological predicate: my intention was to pick out.
the unit extensions of predicates written next door.

There is another shift between the two stages, a shift of relevang
information. The pathological nature of (2) is established only g
the completion of the first stage. But this information is avaijl-
able throughout the reflective second stage of the reasoning. The
reasoning of the second stage should be interpreted as incorporatin§
this information. G

So we distinguish two contexts: one in which we reason to (P),
and the second in which we reason from (P) to (R). Call these the
initial context and the reflective context respectively. Between these
contexts there is a shift in a number of contextual parameters, shifts
in speaker, time, place, discourse position, intention, and relevant -
information. Recall what we want to explain. Predicates (2) and
(2*) are two tokens of the same type, one occurring in the initial
context, the other occurring in the reflective context. Though these
tokens are composed of the same words with the same meanin.g_],-;
one has a determinate extension and the other does not. A pragmatic
explanation is indicated, one that takes account of the shift in the
contextual parameters. If we accept the appropriateness of a prag
matic explanation, then we should expect to find a term occurring if
the two tokens that is context-sensitive. I propose that, in the abSeI_IC@;?
of any reasonable alternative, we explore the idea that the exprcssmﬂlI
‘extension’ is itself the context-sensitive term.

Let ‘extension;’ abbreviate ‘extension in the initial context’,
let ‘extensiong’ abbreviate ‘extension in the reflective context’.
take the occurrence of ‘extension’ in (2) to be sensitive to the conl
in which it occurs. Accordingly, (2) is represented as:

‘Corresponding to the two contexts are two schemas, the I-schema
] the R-schema. The I-schema is

X is in exty(e) iff x is @,

e ‘exti(¢)’ abbreviates ‘the extensiony of ¢’. At the initial stage

f the reasoning, we determine the extension of (2) via the I-schema
obtain this instance: ’

is in extr(2) iff ext|(2) is a unit extension; of a predicat, :
e on th
13 Caldwell Hall at noon 7/1/98. p e board in

we reach a contradiction. We cannot determine an extension for

a the I-schema. Our attempt to do so lands us in contradiction.
conclude:

(2) does not have a well-determined extensiony.

the subconclusion we reach at the culmination of the first
ge of the reasoning.

now reflect on the fact that (2) is a pathological predicate. At
ﬂectlve stage of the reasoning, we determine which predic-
n the. board have unit extensionsy. It’s clear that (1) has a
Fensmnb anq it’s clear that (2) does not, because (2) has no
& ate extension;. So the only unit extension; of a predicate
‘en on the bo_ard in room 213 Caldwell Hall at noon 7/1/98 is
3 In producing (2*) here we have in effect repeated (2). But
{ lave repea}ted (2) in a new reflective context, in which we no
: det_termme extensions via the I-schema. Instead we determine
g ¢ tension for (2*) via the R-schema, according to which

X 18 in extg (@) iff X is ®.

e ¢
d 1a thIS. schema, we can determine an extension for (2%)
; er the instance: .

2

(5
te)ﬁ.&_r

XtR(2%) iff X is a unit extension i i
1 of a predicate writt i
3 Caldwell Hall at noon 7/1/98. B

y.
(2) unit extension; of a predicate written on the board in room 21
Caldwell Hall at noon 7/1/98. [

1ght hand side of this biconditional is true for x=ext(1), and

Otherwise. And so ext(1) is the
t sole member of the extensi
). And we may conclude: 64 R,




126

K. SIMMONS

(R) (2%) has a well-determined extensiong.

(2) and (2*) are semantically indistinguishable. The difference
between them is purely pragmatic. It is a matter of the schema by
which their extensions are determined.*® At the first stage of the
reasoning, the extension of (2) is determined via the I-sck}ema; at
the second stage of the reasoning, the extension of (2%) is deter-
mined by the R-schema. When I first produce the tok.en (2), I am
picking out the extensions; of predicates on the boarq in room 213,
So when we determine the extensions of these predicates, we use
the I-schema. It is the I-schema that is implicated here. We go on
find that we cannot determine an extension for (2) via the I-schema,
on pain of contradiction. At the second stage of .the reasoning, we
repeat the words of (2), producing the token (2%) in a new reﬂectwle
context. To determine the extension of (2*), we use a schema that is
sensitive to (2)’s pathology — and here the implicated sch.ema is lthe
reflective R-schema. That the R-schema is reflective in this way is a
product of the reasoning of the first stage, the assessment of (2) as
a pathological predicate, and the intention to treat (2) as such. With
the shift in context, there is a shift in the implicated schema.

Notice that if we determine the extension of the predicate token
(2) by the R-schema, we find that (2), like (2*), has sole member
ext(1); and if we determine the extension of (2*) by the I—schema,‘ we
find that (2%), like (2), does not have a well-determllned extension.
The expression ‘the extensiong of’ denotes anlopera‘tlon that camis
predicates to their extensionsg; in particular,. it carries (2) a‘nd (Zfz
to a well-determined extension. The expression ‘the extensiony (1
denotes an operation that is undefined for arguments' (2) and (2h )i
So the expression ‘the extension of” is a context-sensitive term thd
shifts its reference according to context.

VII. A SINGULARITY PROPOSAL

5 i . nt
The question naturally arises: What is the relatlop between dlff-erfhe .
occurrences of the term ‘extension’? More specifically, what 15

2 s El ¢ . * ?
relation between the expressions ‘extension;” and ‘extensionr

. A i 1.011]
A possible response here is a Tarskian one: when we move f

0
the first stage of the reasoning to the second, we push up a Jevel

2 3 = b to
language. The expressions ‘extension;” and ‘extensiong’ belong
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distinct languages. On such a hierarchical account, the domain of the
tensiong operator properly contains the domain of the extension;
erator.
But there are a number of serious difficulties with the Tarskian
proach. Consider how such an account might go. We might start
th a fragment of English free of the term ‘extension’. This will
the language at the first level, call it Ly. At the next level of
guage L, we can talk about the extensions of predicates of L.
[hat is, L; contains the expression ‘extension of a predicate of Ly’,
xtensiong’ for short. In general, Ly 41 contains the expression
tension,*, which applies exactly to the predicates of L, .
n immediate worry with this Tarskian account is its artificiality:
suppose that a natural language like English is regimented and
tified in this way? But there are other problems too. Suppose
[ use the phrase “the extension of ‘teaspoon’ ”. According to the
nt Tarskian line, this is a phrase of the language L1, represented
e extensiong of teaspoon’. But then I have picked out an exten-
operator that is massively restricted: only predicates of Ly are
its scope. Godel remarks of Russell’s type theory that ... each
pt is significant only ...for an infinitely small portion of all
bjects” >! A similar complaint can be made here. Why suppose
atmy use of ‘extension’ is restricted to the predicates of Ly?
‘Further, it is hard to see how levels can be assigned in a system-
ay. How are we to interpret a given expression containing
term ‘extension’? To which language does it belong? Except in
y simple cases, we will have little basis for an assignment of
level rather than another. And what level should we assign to a
bal statement like ‘Every predicate of English either has a well-
lermined extension or it doesn’t’? Any assignment of a level here
ompromise the global nature of the statement.
ese difficulties also arise for hierarchical accounts of truth and
hotation. But there is also a special difficulty for a hierarchical
unt of extensions. It is an important mark of extensions that
e are self-members. For example, the extension of the predicate
sion with more than one member’ has more than one member,
= SO is a self-member. But on the hierarchical approach, this
Icate belongs to some level of language, and is analyzed as
sion, with more than one member’ (where o is an ordinal)
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— or in full, ‘extension of a predicate of L, with more than Ong So my proposal identifies what I shall call sing.}darities of the
member’. And the predicate itself is a predicate of Ly, and no i_on. operator. In general, given a context C, if an extension
of Ly. So the extension of this predicate is not a self—l_nember predicate t(_)ken EF cannot be determined by the C-schema, then
— it contains extensions of predicates of L, only. The hierarch. ;

ical account cannot accommodate self-membered extensions, A
distinctive feature of extensions is regimented away.

I am after an account of extensions which accommodates self.
membership, and avoids counterintuitive restrictions. The account [
shall offer is in a strong sense anti-hierarchical. The leading ideg
is that occurrences of ‘extension’ in pathological predicates are
minimally restricted. At this point, a pragmatic prin.ciple of int.er.
pretation comes into play: the principle of Minima{lty., According
to Minimality, restrictions on occurrences of ‘extension are kept to
a minimum: we are to restrict the application of ‘extension’ only
when there is reason to do so. S

Suppose you say: “The extension of ‘natural number 18 infinite 3
Here, your use of ‘extension’ is quite unproblematic. Shpu}d (2) be:
excluded from its scope? Minimality says no. And this is surelly
plausible. As we’ve seen, within its context of. utterance, (2) is
pathological; but outside that context, an extension can be deter-
mined for it. Since your utterance is quite unrelated to (2), we
have no reason to interpret your utterance as in some way patho-
logically linked to (2). Assessed from outside its context, (2) does
have an extension (whose sole member is ext(1)), and so we have”
no reason to withhold (2) from the scope of ‘extensign’ in your
utterance. It would be a poor interpretation that implicated your
utterance in semantic pathology. In general, speakers d'o not usuzl!z
aim to produce pathological utterances, or utterances implicated i

i i i .
R i inimality, we respect this pragmatic fac
X.”* By adopting Minimality, p g . a ence .
parFaSgther Nfinimglitygkeeps surprise to a minimum. We do expect '€ may be no acryal singularities. But continuations like yours
, ~ - dre always possible — and they yield singularities.

; ‘s ot

i i e some revision of ouf |
any solution to a genuine paradox to requir p . - ‘ .
! g - dIe now in a position to see the anti-Tarskian nature of the

intuiti i i ith our intuitions: W

intuitions. But the more a solution conflicts wi ' wskian .

the less plausible that solution will be. By Minimality, almost all_: Sty proposal. As a consequence of Minimality, the singu-
redicates are within the scope of any use of ‘extension’. We af‘_’” Y Proposal is not hierarchical. Recall the con SO it

ISjomel:imf;s forced to restrict ‘extension’ — we must, for examp‘i‘;’:‘ Ngthened f€asoning, suitably represented

limit the scope of its occurrence in (2) by excluding (2). But

exclude only those predicates that cannot be included.

na which determines the extension of Fin its context, then F is
hological. So (2) is a singularity of ‘extension;’, and (2) is also
sathological, since in its context its extension is determined by the
Lschema. (2%) is a singularity of ‘the extension; of”, but (2*) is not

18 a singularity only in a context-relative way — there is an
iate reflective context in which (2) is in the scope of the
nsion operator. In the case of our strengthened discourse, we
from our subsequent reflective context, determine a definite
nsion for (2). (2) is a singularity relative only to the I-schema.

No occurrence of ‘extension’ is without singularities. For
le, suppose you say, innocently enough, “the extension of
ural number’ . But you perversely continue: “unioned with any
If-membered extension of a nine-word predicate in utterance
here you stipulate that utterance U is your very utterance.
I your utterance, there is no shift to a reflective context.
quently, if your first use of ‘extension’ is represented by
nsionc’, your subsequent use is represented by ‘extensionc’ as
1en the only nine-word predicate in your utterance is repre-
by: ‘non-self-membered extensionc of a nine-word predicate
ance U’. It is straightforward to check that this predicate
N is a singularity of ‘extensionc’: the C-schema cannot provide
ension for it.53 It may be that there are no acrual phrases
d that force restrictions on a given occurrence of ‘extension’;

‘ *) has a well-determined extensiong.

€r the occurrence of ‘has a well-determined extensiong’ in
= Call this predicate token (3). Let us ask: Does (3) have an
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extension;? (3) is not a singularity of ‘extensionl’.. So’b)\;v I;l/hmm.
ality, (3) is not excluded from the scope of ‘extensiony’. en we
instantiate the I-schema to (3), we obtain:

So on my Proposal, our simple paradox is to be treated by the
ntification and exclusion of singularities, 53 We treat everyday
lish not as a hierarchy of languages, but as a single language.
0 not divide up the term ‘extension’ between infinitely many

ages; rather we identify singularities of a single, context-
sitive ferm.

x is in exty(3) iff x has a well-determined extensiong.

i i tice in particulay
i ines the extensiony of (3). No i
’l;lhits scgfnma(gf)tzrﬁﬁ for x does not lead to trouble. Both (2) ang blution of the paradoxes:
u . - -
Eﬁ) phave %he same well-determined extensmnR,2 *s)o in feach tc(a;,;
i ide 1 d so both (2) and (2%) are in exty(3),
e right hand side is true, an : pre.in
tSho ag redicate containing an occurrence of ‘extensiong’ has baln
xtenin)onl For the Tarskian, this would amount to an gnacc.epta ale,
fnixing of language levels. According to the singularity proposal,
re are no such levels. it ; . . |
theMoreover there are singularities of extensmnll; that alreni nﬁf
2 . 3 . . u ’
singularities of ‘extension;’. Having inferred (R), yo g

perversely add:

ists in blaming the paradoxes -.-on the assumption that every concept
i , if asserted for any arbitrary object or objects as

1 goes on to say that the simple theory of types carries through

idea on the basis of a further restrictive principle, by which

bjects are grouped into mutually exclusive ranges of significance,
S, arranged in a hierarchy,

jdel suggests that we reject this principle, while retaining the

at not every concept gives a meaningful proposition for any
t as argument:

i i ® any empty

Now form the union of the well-determined extension of (2%) and any pt)l'
ow _ !

extension of a nine-word predicate in utterance V,

] mpossible that the idea of limited ranges of significance could be carried

ipulate that V is your perverse addition. Let (4.) be th Without the above restrictive principle. It might even turn out that it is possible

where you stipulate f the last nine words of V. Given the e every concept to be significant everywhere except for certain ‘singular

predicate token composed 0 o ty extensiong of a nine-word 8 0r “limiting points’, so that the paradoxes would appear as something

context, (4) is represented by_ Srapy heck that (4) is a singu= 240gous to dividing by zero. Such a system would be most satisfying in the

predicate in utterance V7. It is easy to chec 4o an extendil SOWINg respect: our logical intuitions would then remain correct up to certain

larity of ‘extensiong’ — the R-schema cannot provi ! - Corrections, i.e. they could then be considered to give an essentially correct,
farl (3:1) 54 We. ’ ewhat ‘blurred’

or . i

But now, just as we reflected on (2), we can;eﬂteect ;::j (ﬁ;s ,
have determined that (4) is a pathploglcal prehlca ni il
extensiong, empty or othert\:visei1 Smglse lgi) E:rsn ;t ;: gx[ gnSionR i

i in V, it follows that there 1006 okl
P_regf(\?(i?dlr;redicate in utterance V. We’ve _]USt. producedt iiy te .
?;2) of the same type as (4), and in the reflective conteZXtensiQ
determine an extension for (4*), and for (4) — the empitlj,{ detemﬂ
And according to Minimality, any n.eutral sche_ma vtv Singul‘d‘i
an extension for (4) as well. In particular, (4) is no account, e

f ‘extension;’. (4) has an extension_l. On a Tarsklz?n 211 il

of ‘ex f the extension; operator will be properly includ il )
domain o iong operator. According to the singUi® €otecting both these intuitions,
domain of the exten31. R i e Gl
proposal, neither domain includes the other. i

our logical intuitions about

only in pathological or paradoxical contexts that we may

enly suppose that certain predicates have extensions when
» 10t - and in such cases our uses of ‘extension’ require only
l corrections. A second intuition that requires revision is that
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indicates the schema which determines an extension for (2) in its
Xt of utterance. Let us call this the primary representation
f (2). In general, the primary representation of a predicate token
ining ‘extension’ indicates in order the type of the token,
occurrence of ‘extension’ in the token, and the implicated
ema which determines an extension for the token in its context.
primary representation of (2%) is the triple <type(2), exty,

context. There is no wholesale revision of the notion of extension;
no division of ‘extension’ into infinitely many distinct terms; ng
splitting of everyday English into an infinite hierarchy of languageg,

VIII. UNGROUNDEDNESS AND THE IDENTIFICATION OF
SINGULARITIES

We can also assess (2) from contexts other than its own. For

ple, we can assess (2) from the subsequent reflective context.
may represent such an assessment as the triple <type(2), exty,
2>. We can think of this as a secondary representation of (2}
nce here an extension for (2) is not determined by its implicated
ma. Notice that this secondary representation of (2) is identical
€ primary representation of (2). This is appropriate, since both
d (2*) have the same extensiong.
low, with our dependency tree in mind, let us introduce the
n of a determinant of a predicate. As we've seen, to determine
ension for (2), we must first determine the extensions of

Thus far, I have spoken of pathological predicates and singularitieg
more or less informally, largely by way of examples. I shall now
sketch a more general treatment of these notions. -

Consider again our simple paradox. Why does predicate (2)
lead to trouble? In trying to determine an extension for (2), we are
directed to the predicates written on the board — but (2) is lone. of
these predicates. Part of the story, then, appears to be a certain kind
of ungroundedness: to determine the extension of (2) we must ﬁrst
determine the extension of (2), among other predicates. We might
think in terms of a kind of dependency tree:

2 ates to which (2) refers — (1) and (2). We will call these

b5 cates the determinants of (2). Notice that (2) makes reference
(N /(2)\ e extensions; of (1) and (2), since the occurrence of ‘exten-
@ ?) I In (2) is represented by ‘extension;’. So to determine what
et on (2) has (if any), we need to determine the extensionsy of

6} determinants. To determine (2)’s extension, then, the schema

ted for its determinants is the I-schema. In general, let the
/ Tepresentation of a predicate F be the triple <type(F), eXte,,
- Let G be a determinant of F. To determine the extension of
should determine the extension of G vig the c,-schema.

dIe now in a position to introduce the notion of a primary
D€ primary tree for (2) looks like this:

where the extension of a predicate higher on a branch depends o
the extension of any predicate lower on that branch. !
To make these ideas more rigorous, we will need a more precis
representation of (2). Suppose we represented the tol.cen 2) ai éﬁ
ordered pair <type(2), ext;>, where the first Falement is the tylznc'
(2), and the second indicates the representation of the occurt: S
of ‘extension’ in (2). Then something is missing. This 1repr6§f_3ca )
tion does not distinguish (2) from (2*), yet the fom-ler pre tlh ;
token is pathological and the latter is not. There is soymexte‘
more to consider: the schema which determines the token’s € 7)
sion. The implicated schema for (2) is the I~schemall (and fOl;‘S b
the R-schema). So we can represent (2) more persp1cupu513; . ol
ordered triple — <type(2), exty, ext;> — where the third elé

&

(type(2), ext;, ext,)
type(1) (type(2), exty, exty)
type(1) .
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econdary representation of (2) here be the triple <type(2), exty,

i tart with the prim
To construct the primary tree for (2), we start wi punag >. The secondary tree for (2) is this:

representation of (2), the triple <type(2), 'extI, exty>. This is the
node at the top of the tree. At the second tier are the de?tfzrmlnants
of (2), suitably represented. (1) contains no ggnteyft—.sensﬂwe terms,
and so it is suitably represented via its type.”® This is not so for the
other determinant of (2), namely (2) itself. Follow-ing the remarks
of the previous paragraph, (2) is to be assess_ed via the I-schemga,
Accordingly, we represent (2) at the second tier as <typ.e(2?, exty,
ext;>. This is the primary representation of (2) again, which in tum
generates a third tier of nodes. And so on, .1ndeﬁn1tely. .

The primary tree for (2) has an inﬁmte_ b¥anf:h, on which th-e
primary representation of (2) repeats. Th1§ 1nd.1cates that (2) is
a pathological predicate. The repetition of its primary representa-
tion shows that an extension for (2) cannot be determined b‘y the:
I-schema — and so we can also say that (2) is a singularity of
‘extensiony’. .

In general, we construct the primary tree fo'r a predicate F asl
follows. The top node is the primary representation of F — let it be‘T
<type(F), ext.,, ext, 5> At the second tier are the determmant's of 7
suitably represented. Branches lead from each of these determinants
to their own determinants. And so on. . ‘

Consider now the primary tree for (2%). To determine an ex_ten
sion for (2%) in its context of utterance, we consider (1) only, .smc.
in the reflective context (2) is explicitly excluded as a determman.
because it is pathological. In general, the identiﬁca.tlon of the de:tﬁf
minants of a predicate F is guided by both semantic and pragm t.
considerations. On the semantic side, we consider tl}e predlczlleg
to which F refers. We take these to be the detenpmants uﬂe ‘
there are overriding contextual considerations, as in the case =
(2%). )

Accordingly, the primary tree for (2¥) is:

(ty pe (2)r eXtIr eXtN>
i type(l) (tYPe(z)o eXtI’ Cth>
type(1) (type(2), ext, ext;)
/ 3 By

type(1)

secondary representation does not repeat on the infinite branch,
s primary representation does.

can think of (2)’s secondary representation as standing above
he circle in which (2)’s primary representation is caught. And we
given expression to this idea via the notion of a pruned tree.
e the tree here by terminating the infinite branch at the first
rrence of a non-repeating node.® The pruned tree is:

(type(2), ext;, exty)
type(1)

ned tree indicates that we can determine an extension for C
N-schema. We do not restrict the scope of ‘extensiony’ if
0 need. (2) does have an extensiony. (2) is not identified as
ity of ‘extensiony’, in accordance with Minimality.

an now give a more general characterization of the notions of
ndedness and singularities. Let F be a predicate token, with
Ieépresentation <type(F), €Xle,, €Xte,>. Take F’s primary
d prune it If Fs primary representation repeats on an
branch of F’s pruned tree then F is ungrounded. Further, F is
larity of ‘extension,,’, since the repetition of Fs primary
tion indicates that the cpg-schema fails to determine an
for F. Tt is easy to check that (2)’s pruned tree is just its
rée — we cannot prune its infinite branch, since it has no

1 éating nodes. So (2) is ungrounded, and it is a singularity of
ony’,

<type(2): ex':lv EXtR)

type(1)

This well-founded tree indicates the groundedness of (2%). o
Suppose now we determine the extension of (2) frol;*).rl
neutral context, quite unrelated to the contexts of (2) and (
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IX. RUSSELL’S PARADOX AND EXTENSIONS 1ay Now continue:
the pre-:dliiate has no extension, it is not among the predicates of English with
: ct?m?e extengons. Oncc. we set it aside (and any other related patholo-
pr;: ;;:;ne)& we wﬂ; be left with just those predicates of English which have
:reg eX;nS?;(It]en(slli?{ns.[hAnd among these extensions will be the non-self
¢ $ (like the extension of ‘teaspoon’). We have i |
: ave just produced

en of our problematic predi i
i predicate, and this token has a well-determined

The story is essentially the same for a version of Russell’s paradox,
Suppose I write on the board:

A. abstract.

B. teaspoon
C. non-self-membered extension of a predicate on the board.

We can reason to C’s pathology, and conclude that C does not have
an extensionyy (where ‘extensionn’ abbreviates ‘extension in the
initial context’). So only predicates A and B have extensionsy, and
only ext(B) is a non-self-membered extensioniN of a predicate on the
board. Here, in the present reflective context, we have produced a
token of the same type as C, call it C*, which has a well-determined
extensiongg (wWhere ‘extensiongg’ abbreviates ‘extension in the.
reflective context’). The pruned tree for C is just its primary tree, and
this unfounded tree will indicate that C is ungrounded, and a singu-
larity of ‘extensionyy’. In contrast, the pruned tree for C* (which is
just C*’s primary tree) is well-founded, and C* is grounded. Both C.
and C* have extensionsgg; neither have extensionsin.

tverswn (?f RPsselI’s paradox is presented in terms of
a e—’r)églaes]; like ‘abstract’, ‘teaspoon’, ‘non-self-membered
sion’. ut according to the sj i
ion singularity account, thi
- i , S
‘,_.rl(iadlcate type contains a context-sensitive term. We cannot
i Ezdag I::I);tf;;mt(l)ln for the type simpliciter; an extension can be
I the type paired with a context ( '
‘ or, equivalent]
S{;k;l;gof tlf]et htype). According to the contextual analysis zt,
stage of the reasoning we try to d i i
. ; . elermine an extension
type paired with the initial context i. That is, we try to
min i ,
rege an extenspn for ‘non-self-membered extension;” — call
predicate D. Notice that when we suppose that D is a self-

. .'ant Of the I”ese“' UJSe ca [_- ‘ . 3 . s )

A and B, but replace C by
¢’ self-membered extension of a predicate on the board. 1 ; tion because we try to determine that extension of D via the
While C’ does not generate a contradiction, it is nevertheless pathos '
logical. (C'stands to C as the Truth-Teller — “This sentence is trué” =
stands to the Liar.) According to our account, C’' is ungrounded aﬂ_
a singularity of ‘extensioniN’. P
A broader version of Russell’s paradox for extensions migh

be couched in terms of all predicates of, say, English, along 8

following lines:

nc
apture the second stage of the reasoning as follows:

S no ion;. it i
. :;;f;lss.'m(r)l;clé ;S, not :;)mor‘ng the predicates of English with well-
€ i-schema call;not ro eds i (along with any other predicates for
i }i ; vide an extensrlon), we will be left with just those
Si will be the non~se3fwen_determln6d w%tensionsi, “dijarans s
Qo a-t:}r]lfmbered extensions; (like the extension; of
y R _ en of the type of D, call it D*, and this token
ave sol extension; (where ‘extension,” abbreviates ‘extension in

are those, like ‘abstract’ that h self

Among the predicates of English there
s, like ‘teaspoon’, that have non”

membered extensions. And there are other

membered extensions. Now consider the predicate ‘non—self—memf_)efﬂd ensi put all this i
sion’. In the usual way, we reach a contradiction if we suppose that its ex::;al i ants of 1510 terms of dependency trees. The deter-
conclude that : are the predicate-types of English and D itself. The

is self-membered and if we suppose it is not self membered. We

. * r i i
predicate does not have a well-determined extension. “Presentation of D is the triple <type(D), ext;, ext Th
s is He Sk e

lree fo i i
[l | T D haS an lﬂﬁnlte branCh on Wthh the primary I'epre
1 of D repeats. ’s pruned tree is j i i S_
! - D Just its pnmary tree. Thi
. dles that Dis ungrounded, and a singularit of ‘extension-l’
Yy HAE,
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The primary representation of D* is <t‘ype(Dc)l,. eigt_i:[ eXty>,
The determinants of D* are the unproblematic pre 1.ca et ygest;l)f
English, since D is explicitly excluded ai a detenglrc}lan. 0 the
primary tree for D* is well-founded, apd [,) 1s‘gr0un le ” o

As before, the move from ‘extension;’ to extenml(nll]r 1 rlom
‘extensiony’ to ‘extensiongg’) i$ not a move to"a hl}? cih :wtah Ot:
language. Neither expreslfion 1ils m(t);erc?lrgé)srellllstng;v%tjea;eSOIV(; t;l;;

singularities that the othe ¢ !
;Tshselllla;aradix as we resolved our simple ‘para.dc.)x: tlllle ;zggictszctle;l.
sion’ is a context-sensitive expression that is minimally n

any occasion of use.

sssentially richer metalanguage.® But if we adopt the singularity
al, then we are not driven to this conclusion. Let L. pe that
nent of English that is free of context-sensitive terms, Let L/ be
esult of adding to L the context-sensitive term ‘extension’. We
ink of L’ as the object language for our singularity account.
n-this paper I have not attempted to give a formal theory of
nsion’. I have only described some notions — e.g, primary tree,
ed tree, groundedness, and singularity — that I take to be central
ch a theory. But suppose for a moment that we have a formal
arity theory, %5
any theory of context-sensitive terms, there is an inevitable
on of the object language and the language of the theory. We

the language of the theory to be a classical formal language

X. UNIVERSALITY I quantifies over contexts, and in which context-

sensitive terms

Natural languages are remarkably flexible an(}il open—t:nde]d].aggtli:aegr:.
i i id, it might seem that a natura 3
is something that can be said, 1 : : e
i i tential to say it. Natural languages
like English has at least the po : ‘ ‘ o
i of increased expressive

; they always admit of expansion, : oo s
;‘((;3;: Tarsii speaks of the “all-comprehensive, universal character
of natural language, and continues:

ontext-independent. Now the language of the theory — call it T

be in certain ways richer than the object language 1., For
le, T will contain the predicate

“predicate of ./ that has a well-determined extension in some
~ context’.

mong the predicates to whic i si iti
s universal and i inended to b so. i supposed L e i iy
The common langua_g'e'ls univers s GyaU LS i can be expressed N i ‘ CC J : i ‘
provide adequate facilities for e?égreSSl g * 14s singularities, the predicate (Ext) will be in this way more
in any language whatsoever ....™ ;

e than any occurrence of the context-sensitive predicate ‘has
determined extension’,

may tempt us to suppose

m:
[ think that the singularity proposal goes a long way sti?ijgin n
modate this intuition. An occurrence qf the conte?cttlseltl ontradil
‘extension’ is as close to universal as ican be ‘{Vlt,ti(:;; Moreovels
tion — it applies to all predicates except its singu alc.llicat&'?s that aré
according to the singularity proposal, S gregco e of ‘exten’
singularities relative to a given context are in the eﬂccptive contﬁ\
sion’ in other contexts (such as an'appropl‘l?te % occurrence O
Sl heonia ! Sg [the ?ipgﬁ)csztlg‘]ed?ca?;ythat prevent its
P e g 0bg i tured by other use
application from being fully global are cap ; What is excluded from the scope of occurrences of * -
‘EI:XteHSiOH,- : ittle further. Many have thought \ ! What is include&f; we take a ‘Izlownward’ route r:the(:xtileéln
We can take these points a l1tt'le ur:tair;able because any .: ¥ard’ route.) This shows that T is not a Tarskian metalan-
s o iog t{ni\;e;izliiiztg;ag(fe zllslgrrguage mu’st be couched 115 = 0r 1/, since ordinary context-sensitive uses of ‘extension’
of the semantica £

that (Ext) is more comprehensive
Y occurrence of the context-sensitive predicate ‘has well-

ed extension’ in the object language, and that T is a
i metalanguage for I/, But the temptation should be resisted.

of : A I o ;
S not be identified 2 singularities, (Intuitively, the theory
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apply to predicates like (Ext) that are expressible in T l_Jut not in
L'. Again, according to the singu]arlty proposal_, paradox 1sl av.o1d3d
not by a Tarskian ascent, but by the identification and exclusion qf
Smﬁ/llltl)?-relc?:;, if we suppose that T is a classical formal language, _
free of context-sensitive terms, then T cannot contain thg6expressmn
‘extension of a predicate of T", on pain of cor.ltrad1.ct10n. So we cap
generate from this formal language a Tarskian hierarchy of formg]

theory, and the hierarchy of languages generated from T. Indeed,
of ‘extension’ applies to any predicate of any language, as
as the predicate is not identified as a singularity. If we adopt
ngularity proposal, then any use of ‘extension’ is as close to
as it can be. In this way we respect Tarski’s intuition that we
y everything there is to say.

languages, each containing an extension predicate for the {)recedingf | NOTES

, i ible in these languageg i | : ;
language. But none of ihq predlca;ez (f);porszszllie :; Ct]uded ] c%m %ﬁ:; e e
are identified as singularities, an !

ily defined by means of this axiom but must always be separated as
s from sets already given; thus contradictory notions such as “the set of
 or “the set of all ordinal numbers” ... are excluded”. (Zermelo, 1908,

extensions of our ordinary context—sensiti.\r‘e uses of “extens;f)n’;l
To speak metaphorically, our context-sensitive uses of exter}s10n_
arch over not only the predicates k?f T, b;t also all the predicates.
the languages of this hierarchy.

CXPSI’?)Stg 33(() not taﬁe té;)e formal hierarchy generated from T tg
explicate our concept of extension. Th(? ‘levels d0¢ not cgrre}sp;ﬁ_
to any stratification of the context-senm.tlve term ext?s¥n S.kian
singularity proposal abandons this Tarsklan route. For 't‘ ¢ Tar i
questions about the extent of the hlerar(:l}y and quantlflcatﬁor‘l ar
the levels will present special difficulties. Of course, eseos:_
substantial questions, quite independently of any partxcu_le;r g;(;izu]. !
about ‘extension’ in English. But thfzy present no special di Couﬂ.
for the singularity account. According to the' 511,1gu1ar11_ty %?almos'
an ordinary context-sensitive use of ‘extenmgn apI;l 1;35re .
everywhere”, failing to apply only to thos.e Pred}catesht a \;le ul:;e i
logical in its context of utterance. By Mlmm.ahty, when .
term ‘extension’ we point to as many predlca.tes as Wel i
to from our context of utterance. These predl‘cates. mct}l1 il
expressible in T, and at any leve]. of the Tarskian hlerarrcth313 ol

can be generated from that theoretical language (whateve
hierarchy).

i F;Ic? return tg )universality. With respect to the congept t(; 7

sion, a universal language would have a term applyllglg qubject'

predicates of the language. Such a lagguage .would et. oy U

Russell’s paradox. According to the smgularlt)i accou_r:) 1,1’ ol
of ‘extension’ has its singularities. But a use of exte?SI o
everywhere else — even to predicates couched in the lang ]

detailed discussion of the iterative conception of set, see Boolos (1971).
r, the predicative conception still has some force here. Proofs of set
e via Separation depend on predication.
rate Cantor’s paradox, suppose that there is a universal set V of all sets.
ntor’s theorem, the power set of V, call it pV, is strictly larger than V. And
a contradiction: pV contains more sets than the set of all sets, Russell
to his paradox by reflecting on Cantor’s paradox.
asso’ figure can be found in Boolos (1971), where it is attributed to

writes: “Set theory is concerned with a domain B of individuals

g which are the sets” (Zermelo, 1908, p- 201). And “the domain B is

aset’ (op. cit., p. 203).

ine (1937).

Teports that according to Quine’s own account, his starting point was

€ theory of types (Forster, 1992, p. 20).

Can, for example, show in an indirect way that zu{ z} is a set, even though

Ula ‘Xezvx=z’ is unstratified. See Quine (1963, pp. 289-290).

1€ the successor of a set a by aU{a}. Define an inductive sel as one to

€ empty sct & belongs, and which is closed under the successor operation,
atural number as a set which belongs to every inductive set. Then, if w

3

f extelt

€ also notes that prior to Specker’s result, “Rosser and Wang had already
- 14tno model of NF — no interpretation of ‘g’ compatible with the axioms
Make well-orderings of both the less-to-greater relation among ordinals
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The axiom of choice is derivable from Von Neumann’s axiom IV 2, which says
isa proper class iff there is a function with domain A and range V, the class

1s.

for example, Lévy et al., in Miiller (1976, p. 198).

vy et al. write: “The existence of real mathematical objects which cannot

mbers of even finite classes is a rather peculiar matter ... (Miiller, 1976,

). And Quine writes: “.. . the obscure classes are infinite ones, and only the
ones give rise to paradox. Our maxim of minimum mutilation then favors

g all finite classes of whatever things we admit” (Quine, 1963, p.51). But

eumann’s system abandons the standard pairing axiom for proper classes,

‘we cannot even form the unit class of each thing we admit,

n Neumann’s terminology, the proper classes correspond to the IT-objects

e not I-objects. And throughout his 1925 paper, von Neumann quanti-

er 1l-objects. His arithmetic construction axioms and logical construction

ms are ways of producing I1-objects, and they take this form: “There is a I]-

ch that ... ”. See van Heijenoort (1967, pp. 399-400).

Miiller (1976, p. 201).

ystem is consistent if ZF# is consistent, where ZF# is the system of ZF

dditional axiom “There is at least one inaccessible cardinal”,

y et al., in Miiller (1976, p- 202). This system can be modelled in ZF#
ious footnote). Let @ be a fixed inaccessible cardinal, We interpret our

 theory as follows: a ‘set’ is a member of rank(@), and a “class” is a

and that among finite cardinals, unless at the cost of not interpreting the *=’ of Ng
i ity”. (Quine, 1963, p. 294, fn. 1) ofi- |
:112 l?{f:;gly El%et is well-founded if it is not the first link in an ?ndless membersth
chain. The s,et of all well-founded sets generates Mirimanoff’s paradox — and Np
avoid‘s the paradox because in NF the well-founded sets do not fqrm a ;et.. Clearlly-
i -founded: V is one of them, since V is a se|f.
dmits sets that are not well-foun . :
Il:lllcjr:ber and so has a member (namely, V) which has a member (V) which hag 4
ber (V), and so on endlessly. -
?;erlr:] fhe( C)hurch (1974) and the Mitchell (1976) systems, there is, for example,
no set of the well-founded sets, no set of the non-self-membered sets, and no seg
1 ordinals. ( y -
?f aslez Vopénka and Hdjek (1972), and Vopénka ('1979). Vopenkala.nd Haye
developed their theory of semisets for a set theory without a universa .setf.
15 Vopénka’s leading examples of semisets turn on the phenomenon of vague-

ness.

Professor Charles Darwin teaches us that there is a se_t Dth(?t; (:Efei?sain:
linear ordering of this set such that the ﬁrs.t elemfznt lm i e;ﬁn ‘elemeh
Charlie, each non-first element is a scfm 1?: the ﬁz::fodria: gf}:‘rlt; Uy fl,’) elongin'
and the last element is Darwin itself. The co i as: everybod'
to D is not a set; otherwise A would have a last eleme_n - But, & Da_rwi
¢ apes; thus every member of D, mcludmg I !
l‘v(v!:)?l\rj f;&stzf.f 2?1 Eeilrpe.liilements of D can be codx?d in the uan(%l"Si ;)tf fs:} :;
by @, {@}, {{D}}, ...etc in such a way that D itself become.s‘g‘t o
ft'ti-u:ive;se of sets. The class of codes of all apes (element of A) isap

semiset. (p. 33)

'we need not stop here. We can develop a theory of classes modelled by ZF

om that asserts the existence of arbitrarily large inaccessible cardinals
em of tiers, with the lowest occupied by sets, the next by classes, the next
classes, and so on. Such a theory provides a universe for category theory.
etal., in Miiller (1976, pp- 2011f),
Ackermann’s system, see Ackermann (1956). Lévy and Vaught have
L that one can prove the existence in Ackermann’s system of the unit set
2PV, and so on (see Lévy, 1959; Lévy-Vaught, 1961).
and Black (1952, p. 108).

s P. 102 In the same vein, Frege criticizes Grassmann as follows:

i i where
Vopénka cites as other examples of semisets the class of ali]ln};mg n:)f;nb itw i
i -
i “eri ” between not yet born and already born,
there is no “crisp boundary g
yet alive and already dead) and the class of all bald men. He writes

i were
Examples of proper semisets have been known focxl- a }’on]g t;meeb:i: ;:te);ro_
ies, as “bald man paradox”. But w i
held for anomalies, as e.g. the ‘ e
semisets whenever in considering a propert)i of some Ob_]e?()!is) we emp
its intension rather than its extension”. (Vopénka, 1979, p. N
: sets, inc : ent’ as ‘Europe or Asia Vst
NF of subclasses of sets that are not se cont : -
16 There are Oft.lh?treeéa;:ll::::sltzr 1992, pp. 30-31). Surely o highly AR BRI e
some that are fini ;. . Pp- i
17" Zermelo (1908, p. 201). !
: Zermelo’s.
18 elo (1908, p. 203); the emphases' are‘ . 10
P g:t?rlz‘)der((lfi%) and Cantor (1899), cited in van Heijenoort (1967, p
20 Cantor (1899, p. 114); the emphases are Cantor’s.
21 Von Neumann (1925, p. 401).
22 . cit., p. 403. '
23 Iotfnight l:eem natural to restrict ¢ to formulzlicsi tha:{ C(iﬁta;; ::2 H(;,lcum
i i iction would make the sys
ly set variables. However this restric _ . ¥
ggryasdiscussion of this point, see Lévy et al., in Miiller (1976, pp. 18

essence of the concept. (Frege, 1979, p. 34)

Frege’s introduction to Grundgesetze
20); and Russell (1919, p. 12).

(1905), in van Heijenoort (1967, pp. 145-149). Maddy emphasizes the
€€ of Konig’s discussion in Maddy (1983).

leljencort (1967, p. 148), :

, in Geach and Black (1952,

ass Va-fiabl
pers0™
181):
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3 Cantor’s first number class I is the class of all finite integers, generated from |
by the successive addition of units. Cantor’s second number clags H is generateq
by addition and by the taking of limits, with the follow{ng restriction: given any
member of IL, its predecessors constitute a set of cardinality Ro. The smalleg
member is , the limit of the finite integers. After w comes w+1, w+2, 2,
2001 R 1

37 Van Heijenoort (1967, p. 148).

38 ibid.

¥ 0p. cit., p. 149, fn. 1.

See op. cit., p. 148, fn. 1.

4 Op. cit., p. 149.

42 8o I would disagree with a claim of Maddy’s (in Maddy, 1?83, p. 118), that
Konig’s characterization of sets as completed and classes as incomplete is an
articulation of the distinction between sets and proper classes.

43 This question is also taken up in Parsons (1974).

4 Aczel’s set theory admits nonwellfounded sets, replacing ZFS Axiom of Regu-
larity by an Anti-Foundation Axiom (see Aczel, 1987). But still in Aczel’s theory,
there is no set of all sets, no set of the non-self-membered sets, no set of the well-
founded sets, and so on. Aczel’s set theory can no more provide extensions for
‘set’, ‘non-self-membered set’, ‘well-founded set’, etc, than can ZF.

4 Zermelo (1904, p. 516).

46 Expressing a view typical of the French constructivists, Lebesgue wrote:

2 Of course, philosophical discussions of paradoxes provide exceptions to this
weral rule.

e relevant instance of the C-schema, viz.

xtcF is in extcF iff extcF is a non-self-membered extension of a nine-word
dicate in utterance U,

y generates a contradiction.
onsider the schema:

X 18 in extr(4) iff x is an empty extensiong of a nine-word predicate in this
utterance.

put extr(4) for x, we readily obtain a contradiction: extr(4) has itself as a
mber iff it is empty.

or a similar treatment of the Liar paradox and paradoxes of denotation, see
ons (1993, 1994).

Godel (1944), in Schilpp (1944, p. 228).

cit., p. 229.

implicity, we will in general ignore all context-sensitive expressions other
tension’. So we will always represent a predicate via its type unless it
18 an occurrence of ‘extension’,

general, suppose we have a primary tree all of whose infinite branches
n repeating nodes. Then the pruned tree is obtained by terminating each
nfinite branch at the first non-repeating node.

= If the primary tree has any infinite branch on which a node repeats, then we
rune that branch, terminating it at the first non-repeating node. We need the
tion “on which a node repeats” because we do not prune infinite branches

h no node repeats. Consider the following example. Suppose that at the
ck on Monday, someone says:

I believe that we can only build solidly by granting that it is impossible tl?,"
demonstrate the existence of an object without defining it (Lebesgue, (1905)_?
in Moore (1982, p. 314) — the emphasis is Lebesgue’s).

See also op. cit., pp. 316-17; and Russell (1911, pp. 32-33). ¥
47 Recall that Lévy’s hyperclass system and his two-tier system can be mode
1) lension of a predicate uttered at the Great Rock tomorrow.
ivalent to ZF — see Lévy et al., in Muller (1976, pp. 210-212). g
ggugzl can also construct s{rengthened reasoning about ‘true’ and ‘denotes . Fg
parallel treatments of the strengthened liar and strengthened paradoxes c_,f denl;)O.,
tion, see Simmons (1993, 1994). Discussions of strengthened re_asonmg a
‘true’ can also be found in Parsons (1974a), Burge (1979), Barwise and ElCh®
mendy (1987), and Gaifman (1988, 1992). : il a
49 Compare Burge’s discussion of strengthened liar reasoning in Burge
section 1L - _ . "
30 Russell’s paradox is now avoided. Consider the predicate ‘non-se i
extension,’ where the subscript indicates level. This applies only to the Pd A
of L,, and the predicate itself is a predicate of Ly, not of Lo. Andoes ndl
question of its own extension — whether or not it is a self-member —

= B 0 see that the primary tree for (1) has an infinite branch. But itis arguable
51 Kurt Godel (1944), in Schilpp, 1944, p. 149. | « > ot pathological. For ext(G) and ext(H) are both unit extensions, and so

45 at least two members. But then ext(I) is not a unit extension, and so is
member, So we may conclude that (I) has a well-determined extension,

At is all that is said at the Great Rock on Monday. On Tuesday, just one

said at the Great Rock, viz., a token of the same type as (F). And so

l; infinitum. The primary tree for (F) (and for all subsequent predicates) is
d of a single infinite branch, on which no node repeats. Intuitively, F is

ﬂca.l, and its infinite tree indicates that. And so we do not wish to prune

979). ' ,;_e‘_'en though no node on its infinite branch repeats.

18 a‘nother way in which the notion of a pruned tree needs refinement.

Wwrite the following three predicates on the board:

0n of the Earth,

t"llra] number between 5 and 7.

textension of a predicate on the board.

embered 1
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with members exactly ext(G) and ext(H). (An anglogous”situa_tioq arises with the
Liarlike sentence “Snow is white or this disjunct is false”, which is arguably true
in vi st true disjunct.) :
in Vfé??'ﬂ(;fst}(l:tg}:b; way ofjaccommodating the case of (H). A genera‘l ‘rf"atl'nemj
is beyond the scope of this paper, but I hope that what fo]lows' will indicage
its direction. The determinants of (I) are (G),_ (H) and (I?. The Pprimary tree for
(I) shows that (G) and (H) have well-determlnefl ext.ensmns, since they d_° no%
appear on infinite branches. We now form a conjunction composed of ‘c'onjuﬂcts}
as follows. Take those determinants that have well-determined extensions, FOI_'_
each determinant x, write ‘I(ext(x))’ if ext(x) has the property denoted by I, and___
write ~I(ext(x)) if ext(x) does not have the property denoted by I. In the present
case, we obtain the conjunction:
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