The Vector Norm

Definition Let V be a vector space. A *norm* on V is a real-valued function $|| \cdot ||: V \to \mathbb{R}$ that satisfies the following properties.

1. $||v|| \geq 0$ for all $v \in V$ and $||v|| = 0$ if and only if $v = 0$.
2. $||\alpha v|| = |\alpha| \ ||v||$ for all scalars α and all vectors $v \in V$.
3. $||u + v|| \leq ||u|| + ||v||$ for all $u, v \in V$.

A vector v is said to be a *normal vector* if $||v|| = 1$.

The Inner Product

Definition Let V be a real vector space. A (real) inner product on V is a function (\cdot, \cdot) that maps pairs of vectors from V to real numbers that satisfies the following properties.

1. $(u,v) = (v,u)$ for all vectors u and v in V.
2. $(\alpha u + \beta v, w) = \alpha (u, w) + \beta (v, w)$ and $(w, \alpha u + \beta v) = \alpha (w, u) + \beta (w, v)$ for all vectors $u, v,$ and w in V and all real numbers α and β.
3. $(u,u) \geq 0$ for all vectors $u \in V$ and $(u,u) = 0$ if and only if $u = 0$.

Definition Two vectors u and v in a vector space are said to be *orthogonal* with respect to an inner product if $(u,v) = 0$.

Examples

The standard inner product on \mathbb{R}^n is the vector dot product.

$$(u,v) = \sum_{i=1}^{n} u_i \ v_i$$

The standard norm on \mathbb{R}^n is

$$||u|| = \sqrt{(u,u)}$$

The vector space $C[0,1]$ of continuous functions on the interval $[0,1]$ has an inner product

$$(f,g) = \int_{0}^{1} f(x) \ g(x) \ dx$$

This inner product is known as the L^2 inner product. Likewise, we can define an L^2 norm for this vector space by

$$||f|| = \sqrt{\int_{0}^{1} (f(x))^2 \ dx}$$
Other possible norms include the L^1 norm

$$\| f \| = \int_0^1 |f(x)| \, dx$$

and the L^∞ norm

$$\| f \| = \max_{x \in [0,1]} |f(x)|$$

Orthogonal Bases

Definition A basis v_1, v_2, \ldots, v_n for a vector space V is an orthonormal basis if $(v_i, v_j) = 0$ for all $i \neq j$ and $(v_i, v_i) = 1$ for all i.

Observation If a vector space has an orthonormal basis, computing coordinate representations with respect to that basis is very easy. Given an arbitrary vector v in V, we seek to compute a coordinate vector $c = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$ such that

$$c_1 v_1 + c_2 v_2 + \cdots + c_n v_n = v$$

If the basis is orthonormal, we can easily compute the coordinates c_i by taking the inner product with respect to v_i on both sides of the equation:

$$(c_1 v_1 + c_2 v_2 + \cdots + c_n v_n, v_i) = (v_i, v_i)$$

$$c_1 (v_1, v_i) + c_2 (v_2, v_i) + \cdots + c_n (v_n, v_i) = (v, v_i)$$

$$c_1 0 + c_2 0 + \cdots + c_i 1 + \cdots + c_n 0 = (v, v_i)$$

$$c_i = (v, v_i)$$

Constructing an Orthonormal Basis

The Gram-Schmidt algorithm is an algorithm that can convert a basis for a vector space into an alternative basis that is orthonormal. Here is an outline of that algorithm. Let v_1, v_2, \ldots, v_n be a basis for a vector space V.

1. Convert the vector v_1 into a normal vector by dividing it by its own norm.

$$u_1 = \frac{1}{\|v_1\|} v_1$$

2. Construct

$$p_2 = v_2 - (u_1, v_2) u_1$$
The term \((u_1, v_2)u_1\) is the projection of \(v_2\) onto \(u_1\). By construction, \(p_2\) is orthogonal to \(v_1\) (why?).

3. We then form

\[
u_2 = \frac{1}{||p_2||} p_2
\]

in order to make \(u_2\) be both normal and orthogonal to \(u_1\).

4. Next, compute

\[
p_3 = v_3 - (u_1, v_3)u_1 - (u_2, v_3)u_2
\]

and subsequently

\[
u_3 = \frac{1}{||p_3||} p_3
\]

to produce a vector that is normal and perpendicular to both \(u_1\) and \(u_2\).

5. The process repeats until all of the original \(v_i\) vectors have been processed. The result is a set of \(u_i\) vectors which form an orthonormal basis for \(V\).

The Projection Theorem

Here is a theorem from the text which also makes use of the concept of a projection.

Projection Theorem Let \(V\) be a vector space with an inner product. Let \(W\) be a finite dimensional subspace of \(V\) and let \(v\) by an arbitrary vector in \(V\).

1. There is a unique \(u\) in \(W\) such that

\[
||v - u|| = \min_{w \in W} ||v - w||
\]

\(u\) is known as the projection of \(v\) onto the subspace \(W\).

2. \((v-u,z) = 0\) for all \(z \in W\).

3. If \(\{w_1, w_2, ..., w_n\}\) is a basis for \(W\) then

\[
u = \sum_{i=1}^{n} x_i w_i
\]

where

\[
G x = b
\]

\[
G_{ij} = (w_i, w_j)
\]

\[
b_i = (w_i, v)
\]

The matrix \(G\) is known as the Gram matrix and the equations \(G x = b\) are known as the normal
equations.

4. If \(\{w_1, w_2, ..., w_n\} \) is an orthogonal basis for \(W \) then

\[
u = \sum_{i=1}^{n} \left(\frac{w_i \cdot v}{(w_i, w_i)} \right) w_i\]

Observation A very important thing to note about the projection theorem is that the original vector space \(V \) does not have to be a finite dimensional space. The only requirement in the theorem is that \(W \) must be a finite dimensional subspace of \(V \).

This opens an intriguing possibility. Suppose we have a linear operator \(f \) that maps \(V \) to \(V \). If we want to make a finite representation for \(f \) we might do the following:

1. For a \(v \in V \) we compute the projection \(u \) of \(v \) onto \(W \).

2. We compute \(f(u) \) and hope that \(f(u) \) stays in \(W \). If it does not, we project \(f(u) \) back onto the subspace \(W \) to make a vector \(y \).

3. What we have constructed is a restriction of the operator \(f \) onto the subspace \(W \). If \(f \) is still linear on \(W \), we can construct a finite representation for the restricted operator and eventually represent that as a matrix \(A \) such that

\[
A \ u = y
\]