
A Sketch of the Rudiments of Set Theory

Modern mathematics is based on the notion of a set. We all know intu-
itively what a set is supposed to be: the set of people in the room, the set
of positive real numbers, the set of rational numbers, the set of pages in our
textbook, etc. But what sort of thing is a general, arbitrary set A? Infor-
mally, we tend to think of a set A as being a collection of distinct objects
a ∈ A. The last sentence is not a definition of the term set, because we don’t
know what a collection or an object is. In fact, we will not define the term
set. Instead, the term set and the belonging relation ∈ are the undefined
notions upon which the towering edifice of modern mathematics sits. So at
the beginning, all we know is that if a and A are these things called sets,
then it may be that a ∈ A, in which case we say that a belongs to A or a
is an element of A. This symbolism is the formal analogue of our intuition
about sets being collections of objects. Note that the elements of a set are
themselves sets. In order to proceed, we need some axioms that tell us about
sets and belonging. Our first axiom tells us something about the belonging
relation ∈ by relating it to the basic notion of equality.

Axiom 1 (Axiom of Extension). Two sets are equal if and only if they have
the same elements. In symbols:

[A = B] ⇐⇒ [x ∈ A ⇐⇒ x ∈ B]

The Axiom of Extension tells us something that surely corresponds to our
intuition about sets: a set is determined by its elements. We write A ⊂ B
if x ∈ A ⇒ x ∈ B, and we say that A is a subset of B. The Axiom of
Extension implies that A = B if and only if A ⊂ B and B ⊂ A. Hence, if
you are trying to prove that two sets are equal, you should show that each
is a subset of the other.

The remaining axioms of set theory that we will consider all allow us to
make new sets out of old ones. The first of these is

Axiom 2 (Axiom of Specification). If A is a set and S(x) is a logical condi-
tion, then there is a set B whose elements are exactly those x ∈ A such that
S(x) is true.

Clearly the set B furnished by the Axiom of Specification is a subset of A,
and we write B = {x ∈ A | S(x)}. As an informal example, suppose that A
is the set of people in the room, and S(x) is the sentence “x is not a student”.
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Then B = {x ∈ A | S(x)} = {Scott}. Note that B 6= Scott, but rather B is
the set containing the single element Scott.

At this point we must face the unsettling possibility that there might not
be any sets. At any rate, nothing we have said so far (besides our intuition)
guarantees that even a single set exists. So to get things rolling, let’s assume
that at least one set A exists.

Claim. There exists a unique set with no elements. It is denoted ∅ and called
the empty set.

Proof. Indeed, if A is a set (we just assumed that there is at least one set),
then by the Axiom of Specification the set ∅ := {x ∈ A | x 6= x} exists, and
this set clearly has no elements. Any other set with no elements must equal
this set by the Axiom of Extension.

In order to be assured of the existence of more sets than just the empty
set, we need a new axiom.

Axiom 3 (Axiom of Pairing). If a and b are sets, then there exists a set
whose elements are exactly a and b. This set is called the unordered pair of
a and b, and is denoted {a, b}.
Note that if a = b, then the unordered pair {a, a} has only one element,
namely a. We write {a} for this set and call it the singleton of a.

You might ask the following question: why can’t we just use the Axiom
of Specification to construct the unordered pair of a and b? In other words,
why not just define {a, b} := {x | x = a or x = b}? The answer is that this
would be OK provided we already knew the existence of a set A containing
both a and b. Well, why not settle this once and for all by taking A to be
the “set of all sets”? It turns out that no such set exists, as the following
famous paradox shows.

Claim (Russell’s Paradox). There is no set of all sets.

Proof. Suppose on the contrary that A is the set of all sets. Then by the
Axiom of Specification, the following set B exists: B = {x ∈ A | x /∈ x}. In
words, B consists of the sets that are not elements of themselves. Now let’s
ask ourselves whether B ∈ B? Well, if B ∈ B, then by the defining property
of B we see that B /∈ B, a contradiction. On the other hand, if B /∈ B, then
since B ∈ A, we see that B ∈ B, another contradiction. The only way of
avoiding these contradictions is to concede that A must not be a set after
all.

2



Russell’s Paradox demonstrates that we need to be careful when defining
sets if we want to avoid logical contradictions. Even if a proposed set seems
intuitively reasonable, we need to justify its existence by means of the ax-
ioms of set theory. The remaining axioms of set theory tell us under what
circumstances we are justified in asserting the existence of a new set. Like the
Axiom of Pairing, they would be consequences of the Axiom of Specification
if there were a “set of all sets”.

Axiom 4 (Axiom of Union). If A and B are sets, then there exists a set
A∪B, called the union of A and B, whose elements are exactly the elements
of A and the elements of B:

A ∪B = {x | x ∈ A or x ∈ B}.

(DX) Prove that A ∪ ∅ = A, A ∪ B = B ∪ A, A ∪ (B ∪ C) = (A ∪ B) ∪ C,
A ∪ A = A, and [A ⊂ B ⇐⇒ A ∪B = B].

We don’t need a special axiom to get the intersection of two sets A and B.
Indeed, by the Axiom of Specification we can define A∩B := {x ∈ A | x ∈ B}.

(DX) Prove that A ∩ ∅ = ∅, A ∩ B = B ∩ A, A ∩ (B ∩ C) = (A ∩ B) ∩ C,
A ∩ A = A, and [A ⊂ B ⇐⇒ A ∩B = A].

(DX) Prove the following distributive laws :

A∩(B∪C) = (A∩B)∪(A∩C) and A∪(B∩C) = (A∪B)∩(A∪C).

We can also define the difference between two sets A and B without in-
voking a special axiom: A−B := {x ∈ A | x /∈ B}. If all sets under discussion
happen to be subsets of a single set E, then E − A is often denoted A′ and
called the complement of A.

(DX) Prove the De Morgan Laws: (A ∪B)′ = A′ ∩B′, (A ∩B)′ = A′ ∪B′.

Axiom 5 (Axiom of Powers). If A is a set, then there exists a set P(A)
whose elements are precisely the subsets of A. P(A) is called the power set
of A. In symbols, B ∈ P(A) ⇐⇒ B ⊂ A.

One of the most important and familiar operations on sets in the forma-
tion of ordered pairs. For instance, in calculus we are constantly considering
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ordered pairs of real numbers (x, y). Intuitively, we know what this should
be as a set: it should consist of the two elements x and y, but somehow x
should be “first”. Given x and y, the Axiom of Pairing allows us to make the
unordered pair {x, y}, but this is the same as the unordered pair {y, x} by
the Axiom of Extension. How can we use the axioms of set theory to capture
the notion of order?

Definition. If a and b are sets, then the ordered pair (a, b) is defined to be
the unordered pair {{a}, {a, b}}.

Claim. If (a, b) = (x, y) then a = x and b = y.

Proof. You will do it on the first problem set.

If A and B are sets, then we would like to consider the totality of all
ordered pairs (a, b) where a ∈ A and b ∈ B. We now have enough axioms to
show that such a set exists.

Claim. If A and B are sets, then there exists a set A × B whose elements
are exactly the ordered pairs (a, b) for a ∈ A and b ∈ B. The set A × B is
called the cartesian product of A and B.

Proof. Suppose that a ∈ A and b ∈ B. Then by the definition of union
a ∈ A ∪ B and b ∈ A ∪ B, so {a, b} ⊂ A ∪ B. Also, {a} ⊂ A ∪ B. By the
definition of the power set, this means that both {a} and {a, b} are elements
of P(A ∪ B). But then (a, b) = {{a}, {a, b}} ⊂ P(A ∪ B). Again by the
definition of the power set, this means that (a, b) ∈ P(P(A∪B)). Hence, we
have found a single set P(P(A ∪ B)) that contains all of the ordered pairs
(a, b) with a ∈ A and b ∈ B. By the Axiom of Specification we can define

A×B = {x ∈ P(P(A ∪B)) | x = (a, b) for some a ∈ A, b ∈ B}.

Note that the difficulty in this proof was in constructing a set large enough
to contain all of the ordered pairs. We won’t go further with these types of
constructions and arguments, but I hope you are convinced that all of the
mathematical constructs you are familiar with (and many you aren’t) are
really just sets that can be constructed through careful thought and a few
well-chosen axioms.
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Having axiomatically constructed the cartesian product, we are within
striking distance of providing a rigorous definition of a function, which is
perhaps the central concept of modern mathematics. But first we need to
mention something more general: relations

Definition. If X and Y are sets, then a relation, R, from X to Y is a subset
of the cartesian product X × Y .

As an informal example, consider the dog-owning relationship R ⊂ P×D,
where P is the set of people and D is the set of dogs. Then (p, d) ∈ R if and
only if p is a person, d is a dog, and p owns d.

Definition. Suppose that R ⊂ X × X is a relation from a set X to itself.
Then we say that R is

i) reflexive if (a, a) ∈ R for every a ∈ X

ii) transitive if (a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R

iii) symmetric if (a, b) ∈ R implies (b, a) ∈ R.

If R is reflexive, transitive, and symmetric, then we say that R is an equiv-
alence relation on X.

Equivalence relations will be extremely important to us later in the course,
but for now we move on to the more familiar topic of functions.

Definition. A function from X to Y is a relation f ⊂ X × Y such that for
every x ∈ X there is a unique y ∈ Y such that (x, y) ∈ f .

In practice, we don’t generally think of a function f as a set, but rather as a
rule that assigns to every x ∈ X an element y ∈ Y . In accordance with this
dynamic conception of functions, we write f : X → Y instead of f ⊂ X × Y
and f(x) = y instead of (x, y) ∈ f .
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