
To appear in Proc. AAAI’97Dynamic Abstraction PlanningRobert P. Goldman, David J. Musliner, Kurt D. Krebsbach, Mark S. BoddyAutomated Reasoning GroupHoneywell Technology Center3660 Technology DriveMinneapolis, MN 55418fgoldman,musliner,krebsbac,boddyg@htc.honeywell.comAbstractThis paper describes Dynamic Abstraction Planning(DAP), an abstraction planning technique that im-proves the e�ciency of state-enumeration planners forreal-time embedded systems such as CIRCA. Abstrac-tion is used to remove detail from the state represen-tation, reducing both the size of the state space thatmust be explored to produce a plan and the size of theresulting plan. The intuition behind this approach issimple: in some situations, certain world features areimportant, while in other situations those same fea-tures are not important.By automatically selecting the appropriate level of ab-straction at each step during the planning process,DAP can signi�cantly reduce the size of the searchspace. Furthermore, the planning process can supplyinitial plans that preserve safety but might, on furtherre�nement, do a better job of goal achievement. DAPcan also terminate with an executable abstract plan,which may be much smaller than the correspondingplan expanded to precisely-de�ned states. Preliminaryresults show dramatic improvements in planning speedand scalability. IntroductionWe are interested in constructing plans for control-ling embedded real-time systems. By \embedded," wemean that these systems are interacting with a dy-namic environment including unexpected, exogenousevents. By \real-time," we mean that catastrophic fail-ure is possible if a timely control action is not takenin certain situations. For these systems, control plansmust provide guarantees that failures will not occur.Classical planning research has typically involved theconstruction of a single path through a sequence ofstates from an initial state to a goal state. In contrast,constructing plans that take into account exogenousevents and timing failures requires exploring all pos-sible execution sequences and the resulting states. Inthe worst case, this involves examining a state spacewhose size is exponential in the number of propositionspresent in the state description.Copyright c 1997, American Association for Arti�cial In-telligence (www.aaai.org). All rights reserved.

This paper describes an automatic, dynamic abstrac-tion planning technique that directly addresses thisstate-space explosion problem. Abstraction is usedto omit detail from the state representation, reducingboth the size of the state space that must be exploredto produce a plan, and the size of the resulting planitself. The abstraction method we describe has threeuseful features:� First, the abstraction method does not compromisesafety-preserving guarantees: the world model usedfor planning is reduced, but not in ways that af-fect the system's ability to make rigorous statementsabout the safety assurances of plans it is building.� Second, the method is fully automatic, and dynami-cally determines the appropriate level of abstractionduring the planning process itself.� Third, the method uses di�erent levels of abstractionin di�erent parts of the search space, individuallyadjusting how much detail is omitted at each step.The intuition behind DAP is fairly simple: in some sit-uations, certain world features are important, while inother situations those same features are not important.An optimal state space representation would captureonly the important features for any particular state.In essence, DAP allows a planner to search for usefulstate space abstractions at the same time it is searchingfor a plan.This paper describes a prototype DAP planner thatderives safety-preserving, goal-achieving reactive plansin exponentially large state spaces. We present boththe theoretical and algorithmic descriptions of theplanning technique, as well as preliminary results show-ing dramatic improvements in planning e�ciency andscalability.Background: Overview of CIRCAWe developed the prototype DAP planner to addressthe scalability issues faced by the state-space plan-ner in CIRCA, the Cooperative Intelligent Real-timeControl Architecture (Musliner, Durfee, & Shin 1993;

sensor data

Environment

control
signals

Real-Time Subsystem
reaction schedules

feedback data

Scheduler

World Model

selected
reactions

reaction
schedules

AI SubsystemFigure 1: The Cooperative Intelligent Real-TimeControl Architecture.1995). CIRCA is designed to support both hard real-time response guarantees and unrestricted AI methodsthat can guide those real-time responses. Figure 1 il-lustrates the architecture, in which an AI subsystem(AIS) reasons about high-level problems that requireits powerful but potentially unbounded planning meth-ods, while a separate real-time subsystem (RTS) reac-tively executes the AIS-generated plans and enforcesguaranteed response times. The AIS and Schedulermodules cooperate to develop executable reaction plansthat will assure system safety and attempt to achievesystem goals when interpreted by the RTS.Example DomainCIRCA has been applied to real-time planning andcontrol problems in several domains including mobilerobotics and simulated autonomous aircraft. In thispaper we draw examples from a domain in whichCIRCA controls a simulated Puma robot arm thatmust pack parts arriving on a conveyor belt into anearby box. The parts can have several shapes (e.g.,square, rectangle, triangle), each of which requires adi�erent packing strategy. The control system may notinitially know how to pack all of the possible types ofparts| it may have to perform some computation toderive an appropriate box-packing strategy. The robotarm is also responsible for reacting to an emergencyalert light. If the light goes on, the system must pushthe button next to the light before a �xed deadline.In this domain, CIRCA's planning and executionsubsystems operate in parallel. The AIS reasons aboutan internal model of the world and dynamically pro-grams the RTS with a planned set of reactions. Whilethe RTS is executing those reactions, ensuring that thesystem avoids failure, the AIS is able to continue exe-cuting heuristic planning methods to �nd the next ap-propriate set of reactions. For example, the AIS mayderive a new box-packing algorithm that can handle anew type of arriving part. The derivation of this newalgorithm does not need to meet a hard deadline, be-cause the reactions concurrently executing on the RTSwill continue handling all arriving parts, just stackingunfamiliar ones on a nearby table temporarily. When

the new box-packing algorithmhas been developed andintegrated with additional reactions that prevent fail-ure, the new schedule of reactions can be downloadedto the RTS.CIRCA's planning system builds reaction plansbased on a world model and a set of formally-de�nedsafety conditions that must be satis�ed by feasibleplans (Musliner, Durfee, & Shin 1995). Because thisworld model is the focus of the abstraction techniquesdiscussed in this paper, a brief review of the modelformulation is in order.CIRCA's World ModelThe world model is a directed graph representing theworst-case behavior of the environment and the actionswhich the RTS can take to avoid failure. The graphmodel has �ve elements (S;F ; TE ; TA; TT):1. A �nite set of \states" S = fS1; S2; :::; Smg, whereeach state Si represents a description of relevant fea-tures of the world. The features of a state are repre-sented by the set F = fF1; F2; :::; Frg. Each featureFi 2 F has a �nite set of possible values val(Fi).2. A distinguished failure state F , which subsumes allstates that violate domain-speci�c safety constraints.The system strives to avoid the failure state.3. A �nite set of \event transitions" TE that representworld occurrences as instantaneous state changes.4. A �nite set of \action transitions" TA that representactions performed by the RTS.5. A �nite set of \temporal transitions" TT that rep-resent the progression of time and continuous pro-cesses. We only represent the temporal transitionsthat lead to signi�cant process state changes.To describe a domain to CIRCA, the user inputs a setof transition descriptions that implicitly de�ne the setof reachable states. For example, Figure 2 illustratesseveral transitions used in the Puma domain. The AISplans by generating a nondeterministic �nite automa-ton (NFA) from these transition descriptions. Begin-ning from a set of designated start states, the AIS enu-merates the reachable states and assigns to each stateeither an action transition or no-op. Actions are se-lected to preempt transitions that lead to failure statesand to move towards states that satisfy as many goalpropositions as possible. The assignments determinethe topology of the NFA (and so the set of reachablestates): preemption of temporal transitions removesedges and assignment of actions adds them. Systemsafety is guaranteed by planning action transitions thatpreempt all transitions to failure, making the failurestate unreachable (Musliner, Durfee, & Shin 1995). It

EVENT emergency-alert ;; Emergency light goes onPRECONDS: ((emergency nil))POSTCONDS: ((emergency T))TEMPORAL emergency-failure ;; Fail if don't attend toPRECONDS: ((emergency T)) ;; light by deadlinePOSTCONDS: ((failure T))MIN-DELAY: 30 [seconds]ACTION push-emergency-buttonPRECONDS: ((part-in-gripper nil))POSTCONDS: ((emergency nil) (robot-position over-button))WORST-CASE-EXEC-TIME: 2.0 [seconds]Figure 2: Example transition descriptions given to CIRCA's planner.is this ability to build plans that guarantee the cor-rectness and timeliness of safety-preserving reactionsthat makes CIRCA suited to mission-critical applica-tions in hard real-time domains. However, this plan-ning algorithm can be very time-consuming because itenumerates all reachable world states. In the followingsection, we show how dynamic abstraction can makethe planning process more e�cient and responsive.Dynamic Abstraction PlanningIn a state-space model like CIRCA's, one of the moststraightforward ways of using abstraction is to simplyremove a feature from the description of the world.This corresponds closely to the methods used in earlywork on abstraction planning systems to generate ab-stract operators by omitting less-critical elements ofoperator precondition lists (cf. ABSTRIPS (Sacerdoti1974)). ABSTRIPS planned at an abstract level thatthen restricted the extent of the detailed planning re-quired to build a �nal plan. The DAP technique issigni�cantly di�erent in that:� The selection of which features to \abstract away"is performed automatically during planning.� The abstractions are local, in the sense that di�er-ent parts of the state space may be abstracted todi�erent degrees.� The abstractions preserve guarantees of systemsafety.� The planning system need not plan to the level offully-elaborated states to construct a feasible, exe-cutable plan.The DAP concept itself is simple: rather than al-ways using all of the available features to describe worldstates, we let the planner dynamically decide, for eachnew world state, the level of description that is neces-sary and desirable. By ignoring certain features, theplanner can reason about abstract states that corre-

FAILUREEmergency NIL Emergency T

S1
emergency-alert

F

emergency-failure

(event) (temporal)

S0Figure 3: A partially-completed CIRCA plan.spond to sets of \base-level" states, and thus can avoidenumerating the individual base-level states.Of course, during the planning process the systemmight realize that an abstract state that has alreadybeen reasoned about is not su�ciently detailed. Forexample, this occurs when the state description is notsu�ciently re�ned to indicate whether a desirable ac-tion can, in fact, be executed (because the state de-scription does not specify values for all of the featuresin the action's preconditions). In such situations, theplanner must be able to dynamically increase the preci-sion of that abstract state description by including oneor more of the omitted features. We call this processof adding detail a \split" or \re�nement."In the language of �nite automata, DAP starts witha very crude NFA and dynamically adds more detail.DAP re�nes the NFA when it is unable to generate asatisfactory plan1 at the current level of detail. DAPre�nes the NFA by taking an existing state and split-ting it into a number of more speci�c states, one foreach possible value of a particular feature, Fi.For example, let us consider the partially-completedplan given in Figure 3. Here there are three states: thefailure state and two non-failure states, one for eachvalue of emergency, a boolean proposition. This ex-ample is based on the domain model given in Figure 2.We assume that emergency is nil when the systembegins operation.The NFA in Figure 3 is not safe, because there isa reachable state, S1, from which there is a transi-tion to the failure state (emergency-failure) thathas not been preempted. One way to �x this problem1We will be more clear about what is \satisfactory"below.

FAILUREEmergency NIL

S0

S1,1

emergency-alert emergency-failure

emergency-failure

F

push-emergency-button

(action)

Emergency T
Part-in-gripper NIL

Part-in-gripper T
Emergency T

S1,2

preemptedFigure 4: A re�nement of the NFA in Figure 3.would be to choose an action for S1 that will preemptemergency-failure. The domain description containssuch an action, push-emergency-button. Unfortu-nately, one of push-emergency-button's preconditionsis part-in-gripper= nil and S1 is not su�cientlydetailed to specify values for part-in-gripper. Wecan rectify this omission by splitting S1 into a set ofstates, one for each value of part-in-gripper. Theresulting NFA is given in Figure 4. We can now assignpush-emergency-button to solve the problem posedby state S1;1. Further planning is required to resolvethe problem posed by S1;2, either by �nding a preempt-ing action that does not require part-in-gripper =nil or by making S1;2 unreachable.One unusual aspect of DAP is that detail is addedto the NFA only locally. In our example above, weonly added the feature part-in-gripper to the partof the state space where the emergency feature tookon the value true, rather than re�ning all of thestates of the NFA symmetrically. This introduces newnondeterminism: because we do not have a completemodel of the initial state, we cannot say whether theemergency-alert transition will send the system tostate S1;1 or S1;2.DAP in TheoryDuring its operation, DAP manipulates NFAs of a par-ticular type. An NFA, N = hv(N); e(N)i, will have anumber of states (or vertices), Si 2 v(N), each of whichcorresponds to a set of feature-value pairs; we will re-fer to these as f(Si). A state Si necessarily satis�esa proposition, P (Si j= 2P) if P 2 f(Si); it possiblysatis�es P (Si j= 3P) if :P 62 f(Si) (these booleande�nitions may be straightforwardly extended to non-boolean features).The transitions in the NFA are generated by thetransition descriptions, which are nondeterministicSTRIPS operators. A transition t is possibly (respec-tively, necessarily) executable in a state when the tran-sition's preconditions are all possibly (necessarily) sat-is�ed by that state: Si j= 3pre(t)(2pre(t)). Withsome abuse of notation, for each transition t we de�nea function t(S) from a state to a formula (in the generalcase, a disjunction), describing the state(s) that resultfrom executing t in S.

DAP must construct NFAs in which there are nochains of non-preempted, possibly-executable transi-tions that lead to a failure states. To preempt a tem-poral transition in a state, DAP assigns to that statea necessarily executable action that can be executedbefore the preempted transition.We maintainNFAs that contain edges for all possiblyexecutable non-preempted event and temporal transi-tions (we refer to these collectively as \non-volitionaltransitions") and for all currently-assigned actions.The re�nement (or splitting) operation on an NFAN with respect to a state Si and a feature Fjr(N ; Si; Fj) = N 0 is de�ned as follows:S0 = fSjf(S) = f(Si) [f(Fj; z)g for z 2 val(Fj)gv(N 0) = (v(N)� Si) [S0where S0 is the set of newly-added states. New tran-sitions must be added into and out of the replacementstates:e(N 0) = (e(N)� fv1 ! v2jv1 = Si or v2 = Sig)[fv t! Sjv j= 3pre(t);S 2 S0; S j= 3t(v)g[fS t! vjS 2 S0; S j=3pre(t); v j= 3t(S)gDAP in PracticeThe prototype DAP planner takes as input a domainmodel in the form of transition descriptions, a descrip-tion of a set of initial states, and a conjunctive goalexpression. The planner returns an NFA containingonly reachable states. Each state of the NFA will belabeled with either an action or no-op, indicating toCIRCA how the RTS should react in that situation.Failure states will not be reachable in this NFA andthe system will move towards states satisfying the goalexpression whenever possible.The planning problem may be very concisely de-scribed as a nondeterministic algorithm, given in Fig-ure 5. In this presentation, choose and oneof are non-deterministic choice operators. An action is applicableif the state necessarily satis�es its preconditions and ifthe action preempts all transitions to failure from thestate. Note that it is not su�cient to preempt tran-sitions directly to the distinguished failure state. Forexample, if there is a state s with an event transition(i.e., a transition with a zero delay) to the failure state,then any edges into s must also be considered as tran-sitions to failure.In practice, we implement this algorithm throughsearch, with choice points corresponding to the non-deterministic choice operators. The search fails whenit encounters a state for which there is no acceptableaction and for which there is no proposition on which

abstract-plan (isd);isd is initial state descriptionlet N = ;; The graphopenlist = ;;is = make-initial-state(isd);N := N [fisg;push(is, openlist);loopif there are no more reachable states in the openlist thenwe are donebreak;elselet s = choose a reachable state from openlist;openlist := openlist� fsg;oneofsplit-state :choose a proposition p and split s into jval(p)j states;remove s from N and insert the new states;add the new states to the open list;assign-action :choose an action (or no-op) that is applicable for s;failFigure 5: The DAP planning algorithm.to split. We may not be able to split the state produc-tively even if the state is only partially speci�ed. Nofurther splitting will be productive if we can determinethat some bad transition must occur in the state, thatthe state is reachable, and that there are no availableactions with which to preempt the bad transition.The structure of the NFA being constructed guidesus in backtracking. When we fail to successfully han-dle a state, we backjump to the earliest solved state(we keep these on a closed list) that has an edge intothe failed state. Because the state is reachable, theremust be a state with an edge into it, unless the state isthe starting state. If we fail on the starting state, thesearch as a whole has failed.Note that we do not backtrack over state re�ne-ments. Backtracking over these re�nements is nevernecessary: for every plan that can be found at a lowlevel of detail, there is a corresponding plan at everyhigher level. Our experience suggests that the cost of\coarsening" an NFA (and the additional bookkeepingnecessary to provide this option) is not worth the smallsavings in graph size.Through additional backtracking, we provide a sim-ple anytime behavior. The AIS caches plans as they areproduced (recall that all plans are safety-preserving).Through backtracking, the AIS can generate plans thatsatisfy more of the goal propositions. Thus once a �rstsafety-producing plan is generated, the AIS may at willinvest more time into generating better plans.

There are two aspects to the heuristic control of thesearch: the search should be directed to achieve safetyand to move the system towards states that satisfyas many goal propositions as possible. To make thesearch for goal propositions most e�cient, the �rst ac-tion the DAP planner takes is to split the initial stateaccording to the goal propositions. The heuristic weuse for directing the choice of actions and re�nementsis a modi�ed version of McDermott's heuristic estima-tor for state-based ADL planning (McDermott 1996).When choosing how to handle a state, the planner con-structs an operator-proposition graph connecting thecurrent state description to the goal state description.This is a layered graph, with alternating layers contain-ing nodes that represent propositions to be achievedand operators that can establish those propositions.Despite using full lookahead, this approach is heuristicand e�cient because it ignores details such as interac-tions between operators.Our version di�ers from McDermott's because ouractions are simple STRIPS operators; his approachcovers schemas as well and must consider variable bind-ing. Another di�erence is that McDermott's is a moretraditional state-space planner, so state descriptionsare complete and the only way to establish a proposi-tion is to apply an operator with the appropriate post-conditions. Our state descriptions are partial, and oneway for the DAP planner to establish a proposition is tore�ne a partial state description to include that propo-

S1,1

Ftr T

S1,2

FAILURE

F

Ftr NIL

0S S1

FAILURE

F 0S

SPLITFigure 6: Using re�nement to isolate a failure.sition. Note that this operation is similar to the kindof conditional planning done by CNLP (Peot & Smith1992) and Plinth (Goldman & Boddy 1994): when theplanner cannot determine a priori the value of a propo-sition, it plans for both alternatives.The planner combines information about the contextof a state with the heuristic information provided bythe operator-proposition graph. For example, whenchoosing between several interesting propositions onwhich to re�ne a state, the planner will prefer thosethat are established by some transition leading intothe state.As we mentioned earlier, the planner must concernitself with safety as well as goal achievement. One placewhere this di�erence becomes signi�cant is when back-tracking from a bad state (a state is bad if it has anunpreemptable path to the failure state). In this case,the planner will work to avoid the failure. There aretwo ways to do this: either avoid actions that leadto the bad state or re�ne the bad abstract state, todemonstrate that the sub-states in which the bad tran-sition(s) occur are not, in fact, reachable (for exam-ple, see Figure 6). Safety concerns also intrude whennone of the goal-directed actions available at a state arefast enough to preempt a transition that would lead tofailure. Safety is always the paramount consideration,causing the planner to choose an action not preferredby the heuristics in this case.Implementation Status & PreliminaryResultsThe prototype DAP planner is implemented and run-ning on a selection of example domains that were usedin the original CIRCA research. The DAP plannerreasons about safety preserving goals of avoidance andoptional goals of achievement in much the same wayas the original CIRCA planner, except that it does notyet consider the detailed temporal model necessary toensure failure preemption in all cases. Manual inspec-tion of the prototype's output plans shows that theyare very similar to the original planner's; the new plan-ner chooses the same actions for the same states, butdoes not yet correctly derive the timing requirementson all of those actions.Given these limitations, comparisons between thetwo planners are still only approximate. However, ini-tial results are dramatic. Figure 7 shows several rep-resentative cases, some with nearly an order of mag-nitude reduction in search space using DAP. In the

Enumerated States Runtime (sec)Domain Original DAP Original DAPName Planner Planner Planner PlannerPuma 1 826 89 222 1.13Xdemo 2 28 9 0.43 0.08Puma 3 76 16 8.59 0.09Puma 4 330 71 68.3 0.59BT 6 7 7 0.08 0.04Puma 9 212 41 58.8 0.33Figure 7: The DAP planner dramatically reducesthe search space and time.Puma 1 domain, which is one of the largest problemsto which CIRCA has been applied, the DAP planner isable to �nd signi�cant structure in the domain that theoriginal CIRCA planner cannot exploit. For example,the DAP plan is able to describe all of the conditions inwhich to take the push-emergency-button action asa disjunction of just three abstract state descriptions,while the original CIRCA planner selects that actionfor 54 di�erent fully-described states.The BT 6 domain is a small, hand-crafted prob-lem designed to force the original CIRCA planner tobacktrack through several decisions, thus exercising thebacktracking and worst-case state space enumeration ofthe planner. The domain has only one state feature, sothe DAP planner can �nd no suitable abstraction andit makes the same backtracking moves as the originalplanner, yielding the same search-space performance.To date, this is the only domain in which the DAP tech-nique has not yielded any performance improvement.Other simple domains, such as the Xdemo 2 domain(which has only 5 state features), still contain enoughhidden structure that the DAP technique is able to �ndand exploit feasible abstractions.Related WorkMany classical planning systems have used abstractionmethods to increase the e�ciency of searching for plans(see (Kambhampati 1994) for a brief survey). However,these abstractions are typically used only as guides insearching for a plan; the system may not know thatits goals will actually be achieved by an abstract plan,and it will not be able to execute the abstracted opera-tors directly. Instead, traditional abstraction plannersmust eventually expand their current plans down tothe lowest level of detail, removing the abstraction toproduce a �nal executable plan.In the DAP approach, which involves abstractiononly of state descriptions, abstract plans are exe-cutable, because the operators are always completelyspeci�ed. This has two main advantages. First, the

planning process can supply initial plans that preservesafety but might, on further re�nement, do a better jobof goal achievement. Second, the planning process canterminate with an executable abstract plan, which ourresults have shown may be much smaller than the cor-responding plan expanded to precisely-de�ned states.Dearden and Boutilier (1997) have developed an ab-stract planning algorithm for decision-theoretic plan-ning modeled as a Markov decision process (MDP).Their method is similar to the DAP approach in thatit involves aggregating states, but there are some dif-ferences. First, their method is not dynamic: aggrega-tion is performed using a prede�ned set of \relevant"propositions, which is determined using Knoblock's ap-proach (Knoblock 1994). Second, their method is uni-form: the same propositions are relevant everywhere.The underlying model is also signi�cantly di�erentfrom CIRCA's: it does not model exogenous eventsor the timing required for real-time guarantees.Kabanza et al. (Kabanza, Barbeau, & St-Denis 1997)have developed a planning method for reactive agentsthat is similar to the original CIRCA. Their architec-ture di�ers in emphasis, however. The NFAs it con-structs are \clocked:" they make transitions at timesthat are the least common denominator of all possibletransitions. This scheme will su�er a state space explo-sion in domains where there is a wide range of possibletransition delays, like those to which CIRCA has beenapplied. Kabanza's group has concentrated on develop-ing a more exible notation for goals than those usedby CIRCA, but they do not make the same distinc-tion between safety and goal achievement. In previ-ous work, Godefroid and Kabanza (Godefroid & Ka-banza 1991) developed an abstraction technique basedon partial orders. Their results allow a system to ex-amine only a single ordering of independent actions,rather than enumerating all possible orderings. Unfor-tunately, these results are not immediately applicableto CIRCA, because their world model does not includeexogenous events. The more recent work by Kabanzaet al. (Kabanza, Barbeau, & St-Denis 1997) does in-clude exogenous events, but they do not seem to havecarried over the earlier abstraction concepts.Future DirectionsIn this paper, we have presented Dynamic AbstractionPlanning (DAP), an abstraction technique that we useto generate real-time control plans in the CIRCA sys-tem. This abstraction technique is signi�cantly dif-ferent from others in preserving safety guarantees andin performing abstraction locally and dynamically. Inour experience, by automatically selecting the appro-priate level of abstraction at each step during the plan-ning process, DAP signi�cantly reduces the size of the

search space.The main next step in developing the DAP method-ology is to fully integrate the detailed temporal reason-ing that the current prototype omits. This will bringthe new planner onto equal footing with the originalCIRCA planner, and will allow more accurate compar-isons of the e�ciency improvements gained by usingthe dynamic abstraction method.Acknowledgments This work was supported by theDefense Advanced Research Projects Agency undercontract DAAK60-94-C-0040-P0006. We thank the re-viewers for their helpful comments.ReferencesDearden, R., and Boutilier, C. 1997. Abstractionand approximate decision-theoretic planning. Arti�-cial Intelligence 89(1{2):219{283.Godefroid, P., and Kabanza, F. 1991. An e�cientreactive planner for synthesizing reactive plans. InProc. Nat'l Conf. on Arti�cial Intelligence, 640{645.Goldman, R. P., and Boddy, M. S. 1994. Conditionallinear planning. In Proc. Second Int'l Conf. on Arti-�cial Intelligence Planning Systems, 80{85.Kabanza, F.; Barbeau, M.; and St-Denis, R. 1997.Planning control rules for reactive agents. TechnicalReport 197, Comp. Sci. Dept., Univ. of Sherbrooke.Kambhampati, S. 1994. Re�nement search as a unify-ing framework for analyzing planning algorithms. InProc. Fourth Int'l Conf. on Principles of KnowledgeRepresentation and Reasoning.Knoblock, C. A. 1994. Automatically generating ab-stractions for planning. Arti�cial Intelligence 68:243{302.McDermott, D. 1996. A heuristic estimator for means-ends analysis in planning. In Proc. Third Int'l Conf.on Arti�cial Intelligence Planning Systems, 142{149.Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1993.CIRCA: a cooperative intelligent real-time control ar-chitecture. IEEE Trans. Systems, Man, and Cyber-netics 23(6):1561{1574.Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1995.World modeling for the dynamic construction of real-time control plans. Arti�cial Intelligence 74(1):83{127.Peot, M. A., and Smith, D. E. 1992. Conditional non-linear planning. In Proc. First Int'l Conf. on Arti�cialIntelligence Planning Systems, 189{197.Sacerdoti, E. D. 1974. Planning in a hierarchy ofabstraction spaces. Arti�cial Intelligence 5(2):115{135.

