
A Re�nery Immobot for Abnormal Situation ManagementKurt D. Krebsbach and David J. MuslinerAutomated Reasoning GroupHoneywell Technology Center3660 Technology DriveMinneapolis, MN 55418fkrebsbac,muslinerg@htc.honeywell.comAbstractOil re�neries literally provide the lifeblood for globaleconomic health, and disruptions to their operationshave major worldwide impact. We are developinga large-scale semi-autonomous re�nery immobot toassist human operators in controlling re�neries dur-ing abnormal situations. Based primarily on re-active and procedural approaches to intelligent be-havior, the aegis system will interact with multipleusers and thousands of re�nery components to di-agnose and compensate for unanticipated plant dis-ruptions. Through intelligent autonomous behaviorand improved human situation awareness, the aegisproject is expected to have a multi-billion dollar an-nual impact on re�nery productivity.IntroductionThe largest economic disaster in U.S. history was a $1.6billion explosion at a petrochemical plant in 1989. Thisaccident represents an extreme case within the spec-trum of major industrial process disruptions, collec-tively referred to as abnormal situations. While mostabnormal situations do not result in explosions, theycan be extremely costly, resulting in poor product qual-ity, schedule delays, equipment damage, reduced occu-pational safety, and environmental hazards. The in-ability of automated control systems and plant opera-tions personnel to control abnormal situations has aneconomic impact of at least $20 billion annually in thepetrochemical industry alone.Systems for controlling oil re�neries provide an excel-lent example of what Williams and Nayak have calledimmobots (Williams & Nayak 1997). Immobots are ap-pealing because they provide the richness inherent ininteracting with real, physical environments (as withrobots), while maintaining the ready accessibility ofa networked software environment (as with softbots).The functions of a re�nery immobot are directed in-ward, focusing on the control of its complex internalfunctions. These functions include maintaining de-sired operational conditions (goals), detecting threat-ened operational goals, estimating (abnormal) states,and diagnosing, isolating, and recovering from mal-functions.

At the Honeywell Technology Center, we are design-ing and building a large-scale re�nery immobot knownas aegis (Abnormal Event Guidance and InformationSystem). aegis is a semi-autonomous agent speci�-cally designed both to assist operations personnel inthe plant during an upset (by displaying the correctinformation, �ltering alarm oods, etc.), and to takecompensatory and diagnostic actions autonomously viaa digital control system. In this paper we describea portion of the goal-setting, planning, and executioncomponents of aegis.Abnormal SituationsDuring normal re�nery operation, so-called \advancedcontrol" software can be used to automatically adjustparameters of the plant to keep it running at near-peakpro�tability. Advanced control algorithms are based ondetailed mathematical models of the plant's behavior,which are amenable to numerical optimization. How-ever, these models are quite brittle, accurately mod-eling plant behavior only when the plant is runningsmoothly. As a result, advanced control is currentlyan all-or-nothing proposition; if it is on, the operatordoes not participate in the functions it is controlling,and if it is o�, the operator is completely in charge of allaspects of the unit. During many abnormal situations,advanced controls are either turned o� automatically ormanually, as their �ne-grained but narrow techniquesbecome less-�tting models of the real-world plant's be-havior. Then, human personnel, including board oper-ators, �eld operators, and shift supervisors assess thesituation as best they can, and begin following generalprocedures on which they have been trained.The procedures can be quite long (dozens of pages),and by necessity contain lots of structure and contin-gencies, since the exact state of the plant is almostnever known with certainty. Many of the proceduralactions involve sampling data, con�rming other read-ings, and performing diagnostic tests. Some proceduresapply to extremely general contexts (e.g., we're losingair pressure from somewhere), while some are less gen-eral (e.g., air compressor AC-3 has tripped (shut o�)),and some are very speci�c (e.g., the lube oil pump has
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GoalsFigure 1: The PRS Architecture.a broken driveshaft).The procedures are designed to satisfy several gen-eral goals, and the associated actions can fairly consis-tently be grouped into four sets:� Compensatory Actions: Actions designed tomove the plant to a safe state, regardless of whetherthe root cause(s) of the upset has been determined.Compensatory actions usually have a signi�cant butshort-term negative impact on plant pro�tabilitywhich is minor relative to a total shutdown. Typ-ical examples include reducing the feed rate, spillingfeed to temporary tanks, lowering temperatures, andadding steam.� Diagnostic Actions: Actions designed to ascertainthe root cause or causes of an upset, thus facilitat-ing actions to more speci�cally address the situation,eventually repairing it. In some cases, many com-pensatory actions can be taken prior to root causedetermination, while in others, a rapid diagnosis isrequired to avoid automatic subsystem shutdown.� Recovery Actions: Actions aimed to restore theplant to its near-optimal operating conditions, par-ticularly after a root cause has been diagnosed andrepair, restoration, and recovery can begin.� Communication Actions: Actions focused pri-marily on communicating with the user, maintain-ing accurate user awareness of the ongoing situationand assisting the user in making decisions for whichaegis has not been authorized.A Procedural ApproachWe have chosen to build the core reasoning engine ofaegis in C-PRS (Ingrand 1994), a C-based version ofthe Procedural Reasoning System (Ingrand, George�,& Rao 1992; George� & Lansky 1986). As shown inFigure 1, knowledge in PRS is represented as a declar-ative set of facts about the world, together with a li-brary of user-de�ned knowledge areas (KAs) that rep-

resent procedural knowledge about how to accomplishgoals in various situations. Goals represent persistentdesires that trigger KAs until they are satis�ed or re-moved. The intention structure represents currently-selected KAs that are in the process of executing orawaiting execution, in pursuit of current goals. Finally,the PRS interpreter chooses KAs appropriate for cur-rent goals, selects one or more to put onto intentionstructure, and executes one step from the current in-tention structure.Our motivation for using a procedural approachcomes chiey from the fact that su�cient models donot exist for abnormal situations. Instead, the exper-tise for managing abnormal situations is captured inthe form of expert-generated standard operating pro-cedures (SOPs), which require detailed elaboration andregular updates to comply with safety laws. Our expe-rience shows that human operators regularly make useof this type of \compiled" procedural knowledge whenresponding to upsets, largely as a matter of expedience.PRS provides rapid, context-sensitive procedural invo-cation, so that aegis can focus on and respond to newcontexts in a matter of milliseconds, rather than, forinstance, computing suitable responses from an enor-mous, �rst-principles model of the plant.Other features of PRS which have proven to be ex-tremely useful for this domain include:� The hierarchical, subgoaling nature of its proce-dural representation, which allows PRS to combinepieces of plans in novel ways, and is important forexible plan execution and goal re�nement.� Its ability to pursue multiple, goal-directed taskswhile at the same time being responsive to chang-ing patterns of events in bounded time.� Its ability to construct and act on partial (ratherthan complete) plans.� Its default mechanisms for handling stringent real-time demands of its environment, especially crucialfor abnormal situation management.� Its meta-level (or reective) reasoning capabilities,an important feature for controlling the allocation ofprocessing resources, planning attention, and alter-native goal achievement strategies.� Its knowledge representation assumptions, which en-courage incremental re�nement of the plan (pro-cedure) library, an enormous advantage for large-scale applications which undergo constant evolutionas regular maintenance, repairs, and improvementsmodify the plant's operation.



Domain AspectsIn this section, we enumerate several aspects of thedomain which, in combination, provide a unique anddi�cult problem:1. Discrete and Continuous: Control of a re�n-ery involves a combination of discrete choices (e.g.,which tank, which valve, which order, which di-rection, etc.), and continuous settings (how muchfeed, pressure, temperature, etc.). The PRS bind-ing mechanisms, along with property assignment forresources, priorities, etc., work well for the discretepart of the problem. Small mathematical modelsfor computing appropriate continuous values can becoded directly in PRS procedures or called as ex-ternal subroutines. We call these \mini-models,"to distinguish them from the more all-encompassingmodel-based approaches employed by advanced con-trol and traditional AI planning systems.2. Highly Dynamic: In general, long-term projec-tive plans are not useful during abnormal situationsbecause the plant is too inherently dynamic and thee�ects of chosen actions are highly variable and dif-�cult to predict. In most cases, such a plan wouldbecome obsolete almost immediately, which is whywe have chosen a reactive approach.3. Delayed Action E�ects: There exist long, vary-ing gaps between when an action is taken, and whenits e�ects can be con�rmed. Timing constants areused to estimate this delay, so that aegis can intel-ligently monitor the progress of its actions.4. Delayed Performance Measures: Due to engi-neered redundancy in plant design, there are oftenmultiple ways to achieve a given goal. The relativeutility of alternative goal achievement methods mustoften be computed on the y, as the evaluation canrely heavily on the current context. We use a combi-nation of PRS' native prioritization mechanisms andmeta-level control to resolve these conicts. In ad-dition, we envision using external predictive modelsto simulate the e�ects of choices to aid the decision,when time and resources allow.5. Hierarchy of AuthorizationLevels: The degreeof autonomy aegis assumes is dictated by the rulesof authorization on an action-by-action basis. It ispre-authorized to take some actions autonomously,must request authorization for some, and is neverallowed to take others. aegis currently seeks au-thorization for those KAs that require it, and sim-ply fails the KA if authorization is not received.Of course, aegis will then seek alternative ways toachieve the goal, which may themselves require fur-ther authorization requests.

6. Mixed Initiative:aegis is a semi-autonomous associate system, in-tended to operate as a partner and assistant tothe human operators. Many of the available con-trol actions can be taken either by aegis or by thehuman operator; the problem-solving process be-tween aegis and plant personnel is inherently mixed-initiative. The human and immobot must agree onwho's doing what, when, where, how, and in somecases, why. For example, aegis must keep the hu-man informed of its progress and failures, and whenit has run out of alternatives for achieving one of itsgoals. The human must be able to cancel aegis-initiated actions, and even goals, in cases whereaegis does not have su�cient knowledge. We havefound ways in PRS to implement a portion of thissituational awareness, but it is a di�cult problemthat requires a great deal more study.ConclusionsWe have briey described a semi-autonomous, reactiveimmobot that assists in controlling an oil re�nery dur-ing abnormal situations. Because su�cient models ofthe re�nery do not generally exist, we have employeda procedural knowledge representation implemented inC-PRS. Preliminary results have been very encourag-ing, despite the many challenging features of this com-plex, high-impact domain.Acknowledgments This e�ort was in part sup-ported by the NIST Advanced Technology Program,Award 70NANB5H1073 to the Abnormal SituationManagement Joint Research and Development Consor-tium. ReferencesGeorge�, M., and Lansky, A. 1986. Procedural knowl-edge. IEEE Special Issue on Knowledge Representa-tion 74:1383{1398.Ingrand, F.; George�, M.; and Rao, A. 1992. An ar-chitecture for real-time reasoning and system control.IEEE Expert 7:6:34{44.Ingrand, F. F. 1994. C-PRS Development Environ-ment (Version 1.4.0). Labege Cedex, France: ACSTechnologies.Williams, B. C., and Nayak, P. P. 1997. Immobilerobots: AI in the new millennium.AI Magazine 17(3).


