
AIRS: Anytime Iterative Refinement of a Solution

Sam J. Estrem and Kurt D. Krebsbach
Department of Mathematics and Computer Science

Lawrence University
Appleton, Wisconsin 54911

{samuel.j.estrem,kurt.krebsbach}@lawrence.edu

Abstract
Many exponentially-hard problems can be solved by
searching through a space of states to determine a se-
quence of steps constituting a solution. Algorithms that
produce optimal solutions (e.g., shortest path) gener-
ally require greater computational resources (e.g., time)
than their sub-optimal counterparts. Consequently,
many optimal algorithms cannot produce any usable
solution when the amount of time available is limited
or hard to predict in advance. Anytime algorithms ad-
dress this problem by initially finding a suboptimal so-
lution very quickly and then generating incrementally
better solutions with additional time, effectively pro-
viding the best solution generated so far anytime it is
required. In this research, we generate initial solutions
cheaply using a fast search algorithm. We then improve
this low-quality solution by identifying subsequences of
steps that appear, based on heuristic estimates, to be
considerably longer than necessary. Finally, we per-
form a more expensive search between the endpoints
of each subsequence to find a shorter connecting path.
We will show that this improves the overall solution
incrementally over time while always having a valid so-
lution to return whenever time runs out. We present
results that demonstrate in several problem domains
that AIRS (Anytime Iterative Refinement of a Solution)
rivals other widely-used and recognized anytime algo-
rithms and also produces results comparable to other
popular (but not anytime) heuristic algorithms such as
Bidirectional A* search.

Motivation: Greedy Plateaus
Inexpensive searches can be used to generate low-
quality solutions quickly. In particular, we begin by
using best-first greedy search (“Greedy”)—in which the
search is guided solely by the heuristic estimated dis-
tance to the goal (denoted h)—to generate an initial
low-quality solution. In domains in which “low-quality”
implies “longer” (e.g., more actions), these long so-
lutions often contain one or more greedy plateaus. A
greedy plateau is comprised of a sequence of states that

Copyright c⃝ 2012, Association for the Advancement of Ar-
tificial Intelligence (www.aaai.org). All rights reserved.

Figure 1: This graph shows a low-quality (270-step)
solution with three greedy plateaus. For each step on
the x-axis, the estimated distance from that state to
the goal (h value) is plotted.

all remain at approximately the same estimated dis-
tance (h value) from the goal. This apparent “orbit” of
the goal can often make up the majority of the solution.
Figure 1 provides a Greedy Solution in which we ob-

serve three such plateaus: one from steps 50-80, an-
other from 90-130, and the third from 150-250. Greedy
plateaus often result from greedy searches where h,
while admissible, badly underestimates the actual re-
maining distance to the goal. After most of the states
on the “orbit” are visited, h values eventually improve
only to settle on other plateaus later, as shown above.
The motivation for the algorithm we present, called

AIRS, is based on the observation that most plateaus
should be fairly easy to identify and to shorten with
a better, more memory-intensive search (e.g., Bidirec-
tional A*). We also observe that the larger the num-
ber of states on a plateau (with the same h value), the
greater is the probability that pairs of states near the
extremes of the plateau will have a much shorter path
between them than is reflected in the greedy solution.
The unnecessarily longer path can then be replaced
with the short-cut, eliminating the wasteful segment.
This is the crux of iterative refinement as embodied in
the AIRS algorithm.



AIRS

Initial vs. Refinement Search

AIRS is a modular algorithm which allows the use
of any two searching algorithms as the initial and
the refinement algorithms. The initial algorithm is
used to generate an inexpensive but low-quality solu-
tion. The refinement search algorithm is generally more
expensive (both in time and memory) and attempts
to “patch” the current solution by searching between
chosen points to find a shorter path between them.
We note that memory-intensive search algorithms in
particular—which might require far too much memory
to be used to generate an entire solution—can often
be exploited in the refinement stage because the depth
of the sub-solution search is only a small fraction of
the overall solution depth, drastically reducing the ex-
ponent of the chosen algorithm’s exponential memory
requirement.
In this paper, we use two versions of the A* algo-

rithm: Weighted A* (WA*) for the initial solution and
Bidirectional A* (BidA*) for the refinement algorithm.
Recall that A* (Hart, Nilsson, and Raphael 1968;
1972) defines the state evaluation function f = g + h,
with includes the accumulated distance along a path
(denoted g) together with the estimate h. WA* is a
version of A* that weights the g and h values. Standard
WA*uses f = ϵ ∗ g + h where ϵ ≤ 1. When ϵ = 1, the
algorithm becomes A* and produces optimal results.
Anytime Weighted A*(AWA*) uses a generated ϵ value
which increases after each search. We use a starting
value of ϵ = 0.3 with a 0.2 increase in each iteration.
BidA* (Pohl 1971) is a version of A* where instead

of one search, two A* searches are initiated in oppo-
sition to one another. On a sequential processor, the
two searches alternate, each expanding a node and then
checking whether or not there exists an intersection be-
tween their respective fringes. The version we use for
this paper checks to see if the children of each expanded
node intersect the opposing fringe to determine if there
exists a solution path. While this often results in a
near-optimal solution, it does not guarantee optimality,
as the full-blown BidA* would. Because we only seek
to refine a particularly wasteful segment of the solution,
and because we cannot expect the incremental (refined)
solution to be optimal anyway, we cannot justify using
the optimal version because the time and memory re-
quired to guarantee optimality (i.e., to continue search-
ing after the first fringe intersection is found) has been
shown to require exponential space just like unidirec-
tional A* (Kaindl and Kainz 1997) in the worst case,
while the near-optimal version is a superior trade-off as
a refinement algorithm.

Iterative Refinement

The number of states explored with an expensive search
is exponential in the length of the solution. AIRS sug-
gests an alternative by first generating a quick solution
using a cheap search like Greedy or WA* with a small

Figure 2: An intuitive example of an AIRS solution
path after refinement process is complete. Solid lines
depict the final path, with dashed lines showing either
discarded balloons or unacceptable bridges.

weight on g. AIRS then analyzes that solution and com-
putes what it believes to be a “balloon” defined by two
points at the extremes of the plateau the appear to be
in close proximity based on estimated distance between
them (which we call h2). Then, using a more expensive
search such as A*, BidA*, or WA*, AIRS attempts to
replace the balloon with a “bridge” connecting these
apparently close states, and shortening the overall so-
lution.
Figure 2 depicts a solution path at the end of the

AIRS refinement process. The continuous line repre-
sents the final solution. Three pairs of points rep-
resenting balloons—(A,B), (C,D), and (E,F )—had
been chosen at some point by AIRS as candidates for
refinement. In part, these balloons were chosen be-
cause the endpoints appear to be close to each other
in the state space. The dashed lines between pairs
(A,B) and (C,D) indicate the paths found between
these points in the initial (low-quality) solution that
were then later replaced with a shorter path, as shown
with a grey, solid line. In contrast, the grey dashed line
shown between states E and F is a refinement that was
actually worse than the original sequence, and so the
original is retained. In cases where a refinement is ig-
nored, the endpoints (E,F ) are cached and later used
by AIRS to avoid repeating already-failed (but good-
looking) searches.
Pairs of points on the current solution continue to be

chosen in prioritized order and (possibly) refined in this
manner. When refinements are made, new sequences of
states are introduced, opening up new possibilities for
further refinement.

The AIRS Algorithm

We now provide a description of the AIRS algorithm.
In Line 1, we must store the minimum cost for the do-
main. The minimum cost is the smallest action cost
within the domain. For example, the 15-Puzzle’s mini-
mum cost would be 1 because there is no action which
costs less than 1. This is used later in computing the
Ratio (Line 11) to weight it toward larger refinements
in case two pairs of states return the same ratio. In
Line 2, AIRS initially computes a low-quality solution
generated by a fast and suboptimal algorithm such as
Greedy (f = h) or an appropriately-weighted WA*.
AIRS also stores all previous failed searches in a list



Function AIRS(Problem)

1 p ← Minimum Cost;
2 Sol ← GreedySearch(ProblemStart,ProblemGoal);
3 FS ← ∅ ;
4 while TimeRemaining > 0 do
5 (Bx, By) ← (−1,−1) ;
6 Br ← Intetger.MAXVALUE ;
7 x ← 0;
8 while x < Length(Sol )− 2 do
9 y ← x+ 2;

10 while y < Length(Sol ) do

11 Ratio ← h2(Solx, Soly)
g(Soly)−g(Solx)−p +

h2(Solx, Soly)
(g(Soly)−g(Solx)−p)−MaxOverlap(x + 1,y − 1,Sol,FS )

;

12 if Ratio < Br then
13 Br ← Ratio;
14 (Bx,By)← (x, y);

15 y← y + α;

16 x← x+ β;

17 FixedSect ← BidirectionalA*(SolBx, SolBy);
18 if g(FixedSectlast) < g(SolBy)− g(SolBx) then
19 Sol ← Sol0,Bx−1 + FixedSect+ SolBy+1,last;
20 clear(FS);

21 else
22 FS ← FS

∪
(Bx,By);

23 return Sol;

Function MaxOverlap(start, end, Sol, fails)

24 Greatest ← 0;
25 x ← 0;
26 while x < Length(fails ) do
27 q ← failsx.second;
28 s ← failsx.first;
29 overlap ← Min(g(Solend),g(Solq))−

Max(g(Solstart),g(Sols));
30 if overlap > Greatest then
31 Greatest← overlap;

32 x← x+ 1;

33 return Greatest;

(FS) which is initially empty (Line 3). Given the initial
solution, AIRS then attempts to identify which pair of
states along the solution appear to be in close proximity
in the state space, but for which the current path ap-
pears disproportionately long. By computing a shortcut
between these states with a more expensive algorithm
(e.g., BIDA*), AIRS attempts to shorten the overall
solution with a minimum of additional search.
The function h2(si, sj) is the function within a prob-

lem domain which estimates the distance between two
states. In contrast, the function h is a function of one
argument that estimates the distance between a state
and the nearest goal. To determine the best candidate
set of points, it performs an O(n2) computation by it-
erating through a subset of all pairs of states (si, sj)
on the solution path s1, s2, . . . , sn where i < j and n
is the current solution length (Lines 8-16), and where
α and β (Lines 15-16) parameterize the resolution of
the subset selected. For each pair, it computes a spe-
cialized ratio to determine how much a search between
the two states would benefit the solution (Line 11).
This ratio compares the estimated distance between the
states—according to the function h2— by the current
distance along the current solution and then adds on
a weighting factor designed to keep the algorithm from
repeating previous failed searches by using the function
MaxOverlap.
The function MaxOverlap first iterates through all

the failed searches since the most recent successful re-
finement (Line 26). Given each pair, it computes the
degree of overlap between that segment and the search
defined by the two inputs start and end (Line 29). If
the overlap is larger than the greatest overlap so far,
it updates the greatest overlap with that value (Lines
30-31). Once it iterates through all the failed searches,
it return the greatest overlap found (Line 33).
Once the two states have been selected, AIRS uses a

second, more expensive search algorithm to find a path
between them (e.g., BiDA* search, as in Line 17). If
the solution returned is shorter than the current path
between the chosen states, we update the solution to
use the new path and clear the list of previous failed
searches (Lines 18-20). If the returned solution is longer
than the current path, we add the pair of chosen states
to the list of failed searches in Lines 21-22. AIRS re-
peats this process in anytime fashion until time runs
out, at which time it returns the current solution.

AIRS as an Anytime Algorithm

We take this opportunity to observe that AIRS is
ideally-suited for use as an anytime algorithm. Any-
time algorithms are flexible algorithms designed to re-
turn the best solution possible in the time available, but
without knowing how much time is available in advance.
We will show that AIRS has the two crucial properties
required of an effective anytime algorithm. First, AIRS
finds an initial solution very quickly: a crucial property
of a algorithm that might be asked to return a solution
in very little time. Second, the iterative refinements



performed by AIRS are also relatively fast as compared
to common competing algorithms (e.g., WA*). In par-
ticular, we will show that performing expensive search
over short segments results is shorter iterations, which
is beneficial so that when the clock runs out, the prob-
ability of wasting time on an “almost completed refine-
ment” is minimal. (This can be a problem for WA*, in
which consecutive searches take longer and longer as ϵ
grows).
Still, the AIRS algorithm—like any algorithm—has

important trade-offs to make. For an initial (poor) so-
lution length of n steps, AIRS could choose to perform
an entire O(n2) computation to check all orderings of
pairs states to consider as the best “balloon” to refine.
As will be seen shortly, this computation is generally
small in comparison to the resulting expensive search
that follows it.
We also observe that many of the expensive searches

fail to find a significantly better solution on a sub-
sequence of the current solution. As we show in the em-
pirical results, however, it is still worthwhile in terms of
time and space to attempt these refinements. In other
words, even counting the time wasted in generating and
attempting to short-circuit balloons in vain, the suc-
cessful refinements are still cheaper and more effective
than just using a better but more expensive algorithm
in the first place.

Empirical Results
We now discuss some empirical results obtained in two
domains: Fifteen Puzzle and Terrain Navigation.

Fifteen Puzzle Domain

Figure 3 shows the comparison of solution lengths for
AIRS against Anytime Weighted A* given the amount
of time it took Bidirectional A* to complete each of the
100 Korf Fifteen Puzzles (Korf 1985).

Figure 3: AIRS vs WeightedA* for 100 Korf 15-Puzzles.

As shown in Figure 3, AIRS compares favorably to
another anytime algorithm, WA*, on the Korf Fifteen
Puzzle benchmark. Because anytime algorithms are de-
signed to return a solution at “any time,” we ran a

non-anytime algorithm, BidA*on each of the 100 Korf
problems first to establish a baseline. Then, for each
problem, we gave both AWA* and AIRS this amount
of time to produce a solution in anytime fashion. Fig-
ure 3 shows the solution quality for each algorithm for
each problem.
The x-axis represents a specific Fifteen Puzzle prob-

lem instance and the corresponding y is the cost of the
final solution produced by each algorithm. The 100
problem instances are sorted from left to right based
on the difference in cost between AIRS and AWA*; i.e.,
problems in which AIRS outperformed AWA* are fur-
ther to the left. We see from this that AIRS signifi-
cantly outperforms AWA* in 47% of the problems (i.e.,
as indicated by vertical line A). In approximately 23%
of the problems, AIRS outperforms AWA* by a small
margin. In about 22%, both algorithms achieve solu-
tions of the same length and in the last 8%, AWA*’s
solutions are better.
In general, AWA* suffers from infrequent iterations

and thus takes much longer to complete each iteration
to produce a shorter solution. AIRS largely outper-
forms Anytime Weighted A* due to its ability to make
continuous small improvements, which is a useful prop-
erty in “anytime” situations. Counter-intuitively, we
have also observed that AIRS can actually, at times,
converge to a higher-quality solution more quickly start-
ing with a terrible solution than it can with a better
initial solution, even given the same amount of time in
each case. This can happen in domains that are struc-
tured in a way that large “near cycles” can appear in
the initial solution, but can easily be refined away in a
single refinement iteration.

Terrain Navigation Domain

We now turn our attention to a second domain, namely
Terrain Navigation (TerrainNav). TerrainNav is in-
spired by so-called “grid world” domains, but has been
elaborated for our purposes here, as we note that in a
standard grid world without obstacles or non-uniform
costs, an iterative refinement approach is not appropri-
ate. At one extreme (e.g., a minimum spanning tree),
there may be a unique path which, by definition, ad-
mits no possibility of iterative refinement. At the other
extreme, in domains where many equally good paths
exist, even Greedy often finds one in the initial search,
again leaving little or no room for refinement.
In TerrainNav, each coordinate on a grid is given

a weight to represent its height. A larger difference
in heights between subsequent steps means a larger
cost. “Mountains” of various height and extent are
placed throughout the map, sharply raising the weight
on a specific coordinate and probabilistically raising
the weights around the peak proportional to the peak’s
height and the distance from the peak. For TerrainNav,
we use Greedy for the initial search with Euclidean dis-
tance as the heuristic estimate (h). Because h ignores
terrain costs, Greedy walks “through” each mountain



Figure 4: Solution cost after each AIRS refinement step
when AIRS is used as an anytime algorithm and given
the same amount of time as BidA*.

Figure 5: For each refinement, the black section shows
time spent on pair selection, with the grey showing re-
finement (BidA*) search time.

on its way to a fast and suboptimal solution.1

In Figures 4 and 6, we compare the AIRS solution
cost after each refinement step to that of the overall
BidA* solution cost. (Note that horizontal lines for
BidA* are y ≈ 1700 and y ≈ 400, and are shown for
reference even though BidA* is only run once, and takes
the same amount of time to run as we allow AIRS to
run.) The y-axis represents the solution costs for each
method while the x-axis represents the ith iteration of
successful AIRS refinement. We do not plot failed at-
tempts at refinement, but rather consider them (and
their time) as part of the process of a successful refine-
ment. We note that early refinements produce a drastic
reduction in the solution cost, with later ones continu-
ing the refinement at a reduced pace.
Figures 5 and 7 compare the time spent on each phase

of refinement. For each refinement, the black section

1We note that this method of solving a relaxed version
of the problem quickly is reminiscent of current planning
approaches that solve a simplified planning problem quickly,
and then use distances in the “relaxed solution” as heuristic
estimates during the real planning search. The difference
here is that we choose portions of the relaxed solution to
refine directly using shorter searches.

Figure 6: Same as Figure 4 with different terrain pa-
rameters.

Figure 7: Same as Figure 5 with different terrain pa-
rameters.

shows time spent on pair selection, with the grey show-
ing the localized refinement (BidA*) search time. The
y-axis represents time in seconds, and the x-axis rep-
resents the ith iteration of refinement. Again, the ith

iteration consists of the total time spent doing all pair
selection and BidA* (refinement) searches performed
between successful improvements of the solution.
We observe from the time-based graphs (Figures 5

and 7) that approximately the same amount of time was
used in pair selection, regardless of the solution length
from one iteration to the next. This is due to two fac-
tors. First, as the current solution length decreases, the
O(n2) search space decreases quadratically. Second, as
mentioned earlier, the specific pair that AIRS selects
is not from the set of all states, but from a uniform
sampling which is restricted based on several param-
eters, including resolution parameters α and β (Lines
15-16), and the current solution length. By restricting
the space in a systematic way, we can drastically re-
duce the time to identify the next pair, while slightly
increasing the probability of having to perform multi-
ple BidA* searches to find a successful one. We strike a
balance in our algorithm, but any AIRS search should
include this as a tunable parameter for best results.
We see an example of this in Figure 7 from steps 3-9.

In this range, we can see that both pair selection and
BidA* took about the same amount of time because



AIRS finds a successful refinement with only a single
BidA* search. Comparing this against Figure 6, we
see that those same refinements drastically reduced the
length of the solution. This is the balance we want. In
contrast, in Figure 5, we seen that BidA* takes much
more time than pair selection. This specific problem
is, in fact, a difficult one. Early on, BidA* does not
take an excessive amount of time even though there are
multiple searches happening per refinement, but later,
the trade-off does not work ideally because the BidA*
searches are hard. We are currently working on a more
flexible mechanism to more intelligently trade off time
between these two AIRS phases.

Related Work

Anytime algorithms were first proposed as a technique
for planning when the time available to produce a plan
is unpredictable and the quality of the resulting plan
is a function of computation time (Dean and Boddy
1988). While many algorithms have been subsequently
cast as anytime algorithms, of particular interest to us
are applications of this idea to heuristic search.
For example, Weighted A*, first proposed by

Pohl (1970), has become a popular anytime candidate,
in part because it has been shown that the cost of
the first solution will not exceed the optimal cost by
a factor of greater than 1 + ϵ, where ϵ depends on
the weight (Pearl 1984). Hansen and Zhou provide a
thorough analysis of Anytime Weighted A* (WA*), and
make the simple but useful observation that there is no
reason to stop a non-admissible search after the first so-
lution is found (Hansen and Zhou 2007). They describe
how to convert A* into an anytime algorithm that even-
tually converges to an optimal solution, and demon-
strate the generality of their approach by transform-
ing the memory-efficient Recursive Best-First Search
(RBFS) into an anytime algorithm. An interesting vari-
ant of this idea, called Anytime Repairing A* (ARA*)
was proposed initially for real-time robot path planning,
and makes two modifications to AWA* which include re-
ducing the weight between searches and limiting node
re-expansions (Likhachev, Gordon, and Thrun 2004).

Conclusion

We introduce a new algorithm, AIRS (Anytime Iter-
ative Refinement of a Solution), that divides a search
problem into two phases: Initial Search and Refinement
Search. The user is free to choose specific search algo-
rithms to be used in each phase, with the idea being
that we generate an initial solution cheaply using a fast
but sub-optimal search algorithm, and refine relatively
short portions of the evolving solution with a slower,
more memory-intensive search. An important contri-
bution of our method is the efficient identification of
subsequences of solution steps that appear, based on
heuristic estimates, to be considerably longer than nec-
essary. Once identified, if the refinement search com-
putes a shorter connecting path, the shorter path is

substituted and the current solution path is incremen-
tally improved. We emphasize that this method is ideal
as an anytime algorithm, as it always has a valid solu-
tion to return when one is required, and, given the way
subsequences are chosen, refinement iterations are kept
quite short – reducing the probability of wasting expen-
sive search time by failing to complete a refinement just
before time happens to run out. Finally, we present re-
sults that demonstrate in several problem domains that
AIRS rivals other popular search choices for anytime al-
gorithms.

References
Dean, T., and Boddy, M. 1988. An analysis of time-
dependent planning. In Proceedings of the Seventh Na-
tional Conference on Artificial Intelligence (AAAI-88),
49–54. St. Paul, Minnesota: Morgan Kaufmann.

Hansen, E. A., and Zhou, R. 2007. Anytime heuris-
tic search. Journal of Artificial Intelligence Research
28:267–297.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A
formal basis for the heuristic determination of minimum
cost paths. IEEE Transactions on Systems Science and
Cybernetics SSC-4(2):100–107.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1972. Cor-
rection to A formal basis for the heuristic determination
of minimum cost paths. SIGART Newsletter 37:28–29.

Kaindl, H., and Kainz, G. 1997. Bidirectional heuristic
search reconsidered. Journal of Artificial Intelligence
Research cs.AI/9712102.

Korf, R. E. 1985. Depth-first iterative-deepening: an
optimal admissible tree search. Artificial Intelligence
27:97–109.

Likhachev, M.; Gordon, G.; and Thrun, S. 2004. ARA*:
Anytime A* with provable bounds on sub-optimality. In
Proc. Neural Information Processing Systems,(NIPS-
03. MIT Press.

Pearl, J. 1984. Heuristics: Intelligent Search Strate-
gies for Computer Problem Solving. Reading, Mas-
sachusetts: Addison-Wesley.

Pohl, I. 1970. First results on the effect of error
in heuristic search. In Meltzer, B., and Michie, D.,
eds., Machine Intelligence 5. Amsterdam, London, New
York: Elsevier/North-Holland. 219–236.

Pohl, I. 1971. Bi-directional search. In Meltzer, B., and
Michie, D., eds., Machine Intelligence 6. Edinburgh,
Scotland: Edinburgh University Press. 127–140.


