
Iterative-Expansion A*

Colin M. Potts and Kurt D. Krebsbach
Department of Mathematics and Computer Science
Lawrence University, Appleton, Wisconsin 54911
{colin.m.potts, kurt.krebsbach}@lawrence.edu

Abstract
In this paper we describe an improvement to the popular
IDA* search algorithm that emphasizes a different space-
for-time trade-off than previously suggested. In particular,
our algorithm, called Iterative-Expansion A* (IEA*), fo-
cuses on reducing redundant node expansions within indi-
vidual depth-first search (DFS) iterations of IDA* by em-
ploying a relatively small amount of available memory—
bounded by the error in the heuristic—to store selected
nodes. The additional memory required is exponential not
in the solution depth, but only in the difference between the
solution depth and the estimated solution depth. A constant-
time hash set lookup can then be used to prune entire sub-
trees as DFS proceeds. Overall, we show 2- to 26-fold time
speedups vs. an optimized version of IDA* across several
domains, and compare IEA* with several other competing
approaches. We also sketch proofs of optimality and com-
pleteness for IEA*, and note that IEA* is particularly ef-
ficient for solving implicitly-defined general graph search
problems.

Introduction
Heuristic search techniques suffer from two types of
memory-related problems: too much, or too little. Optimal
algorithms, such as A*, require an amount of memory ex-
ponential in the length of the solution path. This causes the
algorithm to run out of memory before producing a solu-
tion, or to spend an impractical amount of time generating,
storing, and revisiting the stored search information. A com-
mon approach to this problem is embodied in the IDA* al-
gorithm, which combines the linear memory requirements
of depth-first search (DFS) with the heuristic estimate from
A* search. While IDA* was in fact the first algorithm to
successfully solve many early search problems, it notori-
ously suffers from over-reliance on trading time for space
spending time regenerating nodes of the search tree. There
are two main types of redundancy. First, IDA* periodically
restarts the entire DFS from the root of the tree after each
successive f -limit is reached. This “iterational” redundancy
is traditionally accepted as an effective “time for memory”
trade-off to exploit DFS’s linear memory requirement, al-

Copyright c⃝ 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

though other researchers have made progress in address-
ing this type of redundancy as well (Sen and Bagchi 1989;
Taylor and Korf 1993).

The second type involves redundancy within a single it-
eration of DFS. Because DFS only keeps the current path
in memory at any given time, it regenerates entire subtrees
of the graph, expanding all successors of such a state once
for each path to the state. This can be a major—and of-
ten underestimated—time inefficiency of IDA*, but one that
can be effectively addressed within the context of the mul-
tiple iterations of IDA*, and is therefore the focus of our
technique. We present the IEA* algorithm, and will show
that IEA* drastically outperforms IDA* under a variety of
assumptions.

A* and Iterative-Deepening A*
Since its introduction, the A* search algorithm (Hart, Nils-
son, and Raphael 1968; 1972) has become the standard by
which best-first search algorithms are judged. A* expands
nodes based on the sum (denoted f) of the cost accumulated
along a path (g), and a heuristic estimate of the distance from
that node to the nearest goal state (h). This node-expansion
strategy guarantees that A* is complete and optimal, pro-
vided that h never overestimates the actual distance to a goal
state (Dechter and Pearl 1985). Unfortunately, A* requires
an amount of memory exponential in the length of the solu-
tion path, causing the algorithm to run out of memory before
producing a solution on difficult problems. The IDA* algo-
rithm (Korf 1985) was developed to address this memory
limitation, and does so by combining the linear memory re-
quirements of (uninformed) DFS with the f function of A*.
IDA* performs a sequence of DFS iterations with increasing
f -limits until an optimal solution is found.

IDA* Optimizations
A first and extremely effective step in curtailing the node
count is to remove cycles from the graph. This can be done
without sacrificing speed and without increasing the mem-
ory requirement. A 2-cycle occurs when we expand a node
P , pick one of its children C to expand, and then one of
those expanded nodes is the parent P . Similarly, an n-cycle
is when we attempt to expand one of the n− 1 states on the
current path. Both types of cycles are easily eliminated.

Iterative-Expansion A*
Low memory techniques like IDA* are extremely fast at ex-
panding nodes as compared to memory-intensive searches
(like A*). For example, depending on the node’s successor
function, a redundant node can often be regenerated much
more quickly than checking to see whether it has already
been generated; however, always regenerating a node im-
plies regenerating the entire subtree rooted at that node. In
IDA*, regenerating subtrees can be a major inefficiency both
within a single iteration and multiplied across f -limited it-
erations.

We now compare IEA* to the optimized version of IDA*.
For purposes of this paper, we assume identical action costs.
IEA* strikes a balance between A* and IDA* to speed up the
search by using a modest and bounded increase to IDA*’s
memory requirement. Since we eliminate cycles consis-
tently in both algorithms, we seek to eliminate other unnec-
essary expansions within single iterations.

A useful way to think about tree search is that we explore
all paths that appear—based on a heuristic—to be of a spec-
ified length until we discover that they belong to a longer
path. All of these paths are unique but may contain the same
subsections which occur whenever there are transpositions
in the tree (a single state with multiple paths to it). The sub-
tree of a transposition node is explored once for each path
to it. IEA* seeks to eliminate the transpositions which will
result in the greatest redundancy elimination. It is clear that
those higher up in the tree result in larger subtrees being
eliminated, both in the current iteration of DFS, and in all
future iterations. In fact, we demonstrate that this strategy
eliminates an exponential number of node regenerations us-
ing memory bounded by the error in the heuristic function.

IDA* vs. IEA* Node Expansion
Figure 1 demonstrates how IDA* and IEA* node expansion
differs. Each tree represents a successive iteration of both
IDA* and IEA*. The f -values of all nodes shown in an
iteration are equal, except for the nodes from the previous
iterations. The highlighted nodes are on the closed list that
IEA* keeps. IEA* begins its search by adding the root to
the fringe. It then performs an f -Limited-Search from that
node to the f -limit of h(root). When that search finishes, we
have completed the first iteration. IDA* begins in exactly the
same way by performing the same f -Limited-Search start-
ing at the root using the same f -limit. However, IEA* keeps
track of the children of the root with f -value ≤ h(root)—
the nodes connected to the fringe in this figure. These chil-
dren are then added to the fringe for the next iteration and
thus added to the closed list as well (once a node is added
to the closed list, it remains there for the duration of the
search.) When IDA* begins its second iteration, it restarts
from the root using a new f -limit based on the last iteration.
IEA* uses the same f -limit, but instead of a complete restart
it begins with the nodes on the fringe (the periphery of the
closed list—similar to a search like A*.) IDA* will even-
tually re-expand all nodes that IEA* has stored, and thus
do the equivalent of starting f -Limited-Searches from each
node on the fringe, which is how IEA* proceeds. It fol-
lows that IEA* will expand the same set of nodes as IDA*,

Figure 1: IDA* vs. IEA* node expansion and closed-list
maintenance.

but whenever a transposition is detected using the closed list,
that node will not be re-expanded, eliminating the entire sub-
tree rooted there.

The IEA* Algorithm
As shown in the top-level function, Iterative-Expansion-A*,
the first while loop of the algorithm (line 4) iterates until a
solution is found, or we can prove no solution exists. It also
sets a new higher f -limit on each iteration using the mini-
mum f -value of the generated nodes (line 15), and creates
a new variable called new-fringe (line 5), which is where
we store information for the next iteration. The next while
loop simply selects the nodes in the fringe based on prior-
ity (lines 6-7), and begins an f -Limited-Search from each
(line 8). After performing the FLS, Expand-Fringe is in-
voked, and each successor s of the current best node is then
added to new-fringe and the closed list if and only if f(s) ≤
f -limit, and s is not on the closed list (lines 2-4). If all chil-
dren were not added (i.e., a cutoff) then the parent node is
put back onto new-fringe, otherwise the parent can be left
off new-fringe for good. The FLS is the standard IDA*
one, except for line 8 where we trim the successors based on
the closed list.

Empirical Results
We now present empirical results obtained across two
demonstration domains. All experiments were run on a Intel
Core i7-2820QM 2.30 Ghz processor with 8Gb of available
RAM. Both the IDA* and IEA* implementations use to the
same f -Limited-Search function. We implement full cycle
checking in both to keep the comparisons consistent. We
use a hash set to do cycle and closed-list checking. Given
this, the hash set passed to the f -Limited-Search function
is the only variation between the two depth-first searches.
The algorithmic difference is that between iterations we up-

Function Iterative-Expansion-A*(initial)
1 result← cutoff;
2 f -limit← f(initial);
3 fringe, closed← {initial};
4 while result = cutoff do
5 new-fringe← ∅;
6 while fringe ̸= ∅ do
7 best← pop min f -value node in fringe;
8 result← f-Limited-Search(best,

f -limit);
9 if result ̸= cutoff then

10 return result
11 expansion←Expand-Fringe(best,

f -limit);
12 new-fringe←new-fringe ∪ expansion;
13 closed←closed ∪ expansion;
14 fringe← new-fringe;
15 f -limit← min{f(s)|s ∈ Gen, f(s) > f -limit};
16 return result

Function f-Limited-Search(node, f-limit)
Result: a solution, failure, or cutoff

1 cutoff-occurred← false;
2 if f(node) > f -limit then
3 return cutoff
4 else if Goal-Test(node) then
5 return result ∪ {node}
6 else
7 foreach state s in successors(node) do
8 if s /∈ closed then
9 result←f-Limited-Search(s, f -limit);

10 if result = cutoff then
11 cutoff-occurred← true;
12 else if result ̸= failure then
13 return result

14 if cutoff-occurred then
15 return cutoff
16 else
17 return failure

Function Expand-Fringe(node, f-limit)
Result: nodes for new fringe

1 nodes← ∅;
2 foreach state s in (successors(node)−closed) do
3 if f(s) ≤ f -limit then
4 nodes← nodes ∪ {s};

5 if nodes ̸= (successors(node)−closed) then
6 nodes← nodes ∪ {node};
7 return nodes

date IEA*’s closed list by inserting new states into it, as pre-
viously described. Finally, we use the Manhattan distance
heuristic function on both algorithms and domains.

Fifteen-Puzzle Domain
Figure 2 illustrates how IEA* runtimes compare with IDA*
for each of the 100 Korf Fifteen-Puzzle problems (sorted by
the amount of time IEA* took.) The important feature of
this graph is how it uses a log scale to show the differences
between IEA* and IDA*. We note that the difference be-
tween the two shows up as relatively constant on the graph,
demonstrating an exponential difference in runtimes. As we
will see, these times correspond linearly with differences in
nodes expanded.

Figure 3 shows the same data plotted as the ratio of IDA*
to IEA* runtime, effectively representing IEA*’s speedup
factor for each of the problems. As we see, IEA* performs
almost 4 times better than IDA* on average. Computing the
IDA*/IEA* runtime ratios, we get a range of 0.8 to 14.0, a
large disparity that hugely favors IEA*. While this result is
related to an exponential reduction in the number of node
expansions, IEA* incurs a slightly greater time cost for ex-
pansions. Therefore, the benefit in terms of nodes expanded
comes from two sources: the number of transpositions that
occur in the given f -limit, and the number of iterations. For
easier problems this benefit has not produced a large dis-
parity between IDA* and IEA* node expansions, and thus
we see IEA* losing out. However, in increasingly difficult
cases, IEA* starts to win at around 4 times better. With more
iterations, and more costly effects by missed transpositions
high in the tree for IDA*, this ratio begins sky-rocketing and
we enjoy 14 times better performance.

æ
æ
ææ
ææ
ææææ
ææ
æ
ææææ
æææææ
æææ
æææææ
ææææ
æææ
ææ
ææ
æææ
æææ
æææææææ

æææææææ
ææ
ææææ
ææææ
æææ
ææææ
æææ
æææ
ææææ
æ
æææææ
æææ

æ
æ
æ

à

à

à

à
à

à

à

à

à

àà
ààà

à

à
ààà

àà

à

à

à

à
à
à
à

à
àààà
à

àà

à
à

àà

à

à
à

à

à

à

à
à
à

à

à
à

à

àà

à

à

à

à

à

à
àà

à

àà

à

à

à

à

à

à

àà

à

à

à
àà
à
à

à
à

à
àà
à

à
à

à
à
à
à
àà
àà

à

à

à

0 20 40 60 80 100
Problem

0.01

0.1

1

10

100

Time HminL

Figure 2: Runtime comparison for IEA* vs. IDA* for each
of Korf’s 100 Fifteen-Puzzle Problems, plotted against a log
scale. Note that each difference is approximately the same,
reflecting an exponential difference.

Figure 4 shows us the closed list for IEA* on the same
problem set, sorted by the number of iterations. This is plot-
ted against lines for the complexity classes of A* and IEA*.
We see that in every case, IEA* uses less memory than the
predicted amount, which is exponentially better than A*.

For example, we look at a Fifteen-Puzzle instance with
optimal solution depth d = 55, and h(root) = 43. The

Manhattan distance heuristic has parity, that is M = 2. So
k = ⌈ 55−43

2 ⌉ = 6 and b = 4, so we get |closed-list| ≤ 46 =
4096. However, if we assume an average branching factor
of b = 2.5, then that IEA* stores an average of 2.56 ≈ 245
nodes in the closed list. For IEA*, 245 ≤ nodes ≤ 4096,
but for A*, 2.512 ≈ 59,605 ≤ nodes ≤ 412 = 16,777,216.
Where our experimental results are 184 nodes for IEA*, and
6,488,168 for A*. Further, IDA* require bd nodes, so a max-
imum of 4 ∗ 55 = 220 and an average of 2.5 ∗ 55 = 137.5.

A second way to illuminate the exponential difference
noted above is to look at the average exponential curve. We
take the number of nodes expanded at each depth for both
IDA* and IEA*, take the difference, and curve fit a function
of the form a × bx. Figure 5 plots the data points (the ac-
tual differences) along with the fitted curve for each problem
against a logarithmic scale. It is easy to see how closely the
curves approximate the points, and that all appear as a line in
the graph showing the exponential difference. For our fitted
function, a is a measure of how quickly we will see benefit,
b is a gauge of long-term node count, and x specifies the iter-
ation. Then, we take the average of all values to get roughly
a = 15, and b = 6.4. The standard deviation for b is approx-
imately 1.2, but for a it is 36. This is to be expected, since
a varies greatly with how soon the fringe becomes effective,
but b remains relatively constant as time wears on. Thus we
expect in general—and we see in practice—that IEA* really
starts to perform better as we perform more iterations; i.e., as
more node expansions are required. We forgo a discussion

20 40 60 80 100
Problem

2

4

6

8

10

12

IDA*�IEA*

Figure 3: Speed-up factor for IEA* vs. IDA* for each of
Korf’s 100 Fifteen-Puzzle Problems.

of A* here because it is well known that for the Fifteen-
Puzzle, IDA* with cycle checking is a faster method, and
thus IEA* surpasses it even further. However, in our sec-
ond domain, Grid Navigation, A* has superior results. This
is largely because we use a 256 by 256 grid which is an
explicit graph that easily fits into memory. We test on the
Grid Navigation domain because it is rampant with transpo-
sitions, which DFS historically struggles with. We selected
this domain to show how extremely effective IEA*’s closed
list is at detecting these transpositions. As expected, we ob-
serve IEA* outperforming IDA* exponentially.

20 40 60 80 100
Problem

100

104

106

108

1010

Nodes

Figure 4: Number of nodes stored on the closed list for each
of Korf’s 100 Fifteen-Puzzle Problems (bottom line), plot-
ted against the average complexity class of A*: 2.5d−h(root)

(top line), and the average complexity class of IEA*:
2.5

d−h(root)
2 (middle line) .

2 4 6 8 10 12
Iteration

100

104

106

108

IDA*-IEA*

Figure 5: Difference between number of nodes expanded
by IDA* vs. IEA*, plotted by iteration. The 100 curves
are fitted to the actual data of the 100 Korf Fifteen-Puzzle
problems, with the individual points representing the actual
differences by iteration.

Grid Navigation Domain
As a second test domain, we present results of searching for
an optimal path through a grid-based map with obstacles.
We seek an optimal route for an agent allowed to move be-
tween adjacent cells in one of (at most) four directions. Fig-
ure 6 shows the sampling of test problems, presented as the
ratio of IDA* to IEA* runtime, effectively telling us how
much better or worse IEA* did compared to IDA*. We ob-
serve that IEA* runs from 2 to 26 times faster than IDA* on
all but 3 problems, with an average speedup factor of about
5. These tests were run on 1000 different problems, and we
present a representative selection of 41 of them here (which,
if anything, are biased to IDA*’s advantage). For exam-
ple, one exceptionally difficult problem not included in Fig-
ure 6 showed IEA* performing 400 times faster. In addition,
most of the low ratios (including losses) came from prob-
lems where the runtimes were on the order of only 10ms.

ææ
æ

ææ

æ

æ
æ
æ

æ

æ
æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ

æ

æ

æ

æ

æ æ

10 20 30 40
Problem

5

10

15

20

25

IDA*�IEA*

Figure 6: Speed-up factor for IEA* vs. IDA* for a random
sampling of Grid Navigation problems.

Theoretical Results
Space complexity
In general, the memory requirement for depth-limited search
is O(bd), assuming that b is the maximum branching factor
and d is the depth of the shallowest solution. Assuming h
is the heuristic function, let M be the minimum increase in
f -limit, and r be the root node. Finally, we let k = ⌈d−h(r)

M ⌉
(which is the number of iterations.) Then IEA* stores a max-
imum of O(bk) nodes in memory—an increase bounded by
the error in the heuristic function h.

Each iteration causes the f -limit to increase by at least
M , so at most, we will perform k iterations, thus increasing
the closed lists k times. In the worst case, suppose during
each iteration that every possible node is added to the closed
list. Thus, at a given iteration i, O(bi) nodes will be on the
closed list.

To see how this works, we compare the number of nodes
added by IEA* to that of A*. To do this, we view A* as
an iterative search where each “iteration” represents all the
nodes of the same f -value, which must all be expanded be-
fore expanding any higher-valued nodes. Now, we consider
the number of nodes that can be added per iteration to the
closed list. For A*, any node with f ≤ f -limit will be added
to the closed list, which includes all nodes of all subtrees
of the fringe satisfying this property—often an exponential
number of nodes. Now suppose these subtrees contained
only some of the children of the fringe nodes, and no nodes
at greater depths. This number represents an extreme lower
bound for A*; however, IEA* will always expand exactly
that many nodes.

Completeness
To show completeness, we rely upon the completeness of
IDA*. The only way for IEA* to be incomplete is if—by
keeping a closed list—IEA* somehow fails to consider a
node that IDA* does consider. So we only need to show
that the first n nodes of a path P to the goal must be on the
closed list. The initial state is trivially on the closed list after
the very first expansion. Now the next node on P is either on
the closed list or it is not. If it is, we proceed; if it is not, then

the initial state was on the fringe and the f -Limited-Search
would proceed normally from there. Through iteration, we
see that the IEA* algorithm is complete.

Optimality
Proof of IEA*’s optimality follows from the proof of opti-
mality for IDA*. Since IEA* iterates at increasing f -depths,
which are set each time using the minimum f -value that was
found greater than the current f -depth, we know that no so-
lution exists at any f -depth checked previously due to the
proof of IEA*’s completeness. Therefore, the first time we
find a solution s at depth d, we know there can exist no solu-
tion at any depth less than d. Thus, s is an optimal solution.

Related Work
While IDA* was in fact the first algorithm to successfully
solve many early search problems, it notoriously suffers
from over-reliance on trading time for space, using too lit-
tle memory. Because DFS remembers only the current path,
many nodes are re-expanded redundantly both within and
across f -limit iterations.

When h is consistent, A* handles a graph like a tree and
never expands a node more than once; however, IDA* can-
not prevent the re-expansion of nodes in a graph given only
the current path. The only way to completely eliminate du-
plicate nodes from a graph search is to store all generated
nodes (i.e., the union of the closed and open lists); however,
it has long been known that some duplicates can be cheaply
eliminated by comparing new nodes to nodes on the current
path from the root (Pearl 1984). This optimization requires
no additional memory, but analysis shows that it can be ex-
pensive, as the set of nodes on the current path is constantly
changing, incurring overhead costs with every DFS node ex-
pansion.

A variety of proposals have also been published that use
additional available memory to improve the runtime perfor-
mance of IDA*. Sen and Bagchi’s MREC algorithm (1989)
accepts a runtime parameter M denoting the amount of ad-
ditional memory MREC is allowed to use beyond IDA* re-
quirements. MREC then uses this to store as much of the
explicit graph as possible to prevent duplicate generation.

As discussed earlier, an obvious improvement for prob-
lems involving general graph search is to eliminate cy-
cles. Dillenburg and Nelson describe two types – full cycle-
checking and parent cycle-checking, and provide guidelines
for which type should be used with IDA* on a given prob-
lem (1993) . Taylor and Korf manage to eliminate some du-
plicates without explicitly storing them by performing a lim-
ited breadth-first search of the space, and creating a finite-
state machine (FSM) describing a set of operator strings
known to produce duplicate nodes (1993). The FSA rep-
resents a more efficient abstraction of the set of duplicates
in the shallow portion of the search tree. Then, when-
ever a string is encountered during DFS that matches an
FSM string, the rest of that path can be safely pruned. We
should note that this technique is only useful for problems
described implicitly (e.g., the Fifteen-Puzzle). Reinefeld,
et.al., have suggested adapting strategies from two-player

games to dynamically reorder node successors as well as
combining these strategies with standard transposition table
storage techniques (1994). The reordering techniques de-
scribed differ from ours in that they only potentially speed
up the final iteration of IDA*, whereas IEA* produces sav-
ings from each transposition node forward through all future
iterations. Finally, so-called fringe search appears to add
both the closed list and the open list from A* to implement
an algorithm with the same memory requirements that IDA*
was initially developed to address (Bjornsson et al. 2005).

Future Work
We are currently exploring two threads of research related to
the work reported on here. The most immediate work con-
cerns developing a parallelized version of IEA* to exploit
multicore machine architectures. One of the biggest issues
in parallelization is partitioning the work effectively. Search
algorithms in particular tend to be executed sequentially, and
each step must synchronize across the board; however, the
way we have structured the IEA* fringe lends itself to a use-
ful and natural partitioning of the work. We are currently
developing a method to cache the closed list across mul-
tiple processors while maintaining cache consistency. We
also intend to apply results of this work to heuristic search
planners, especially in domains which tend to be dense with
solutions, and for which iterative-deepening techniques are
particularly efficient at finding the first optimal solution.

Conclusion
We introduce an improvement on the classical IDA* algo-
rithm that uses additional available memory to find solutions
faster. Our algorithm, IEA*, reduces redundant node ex-
pansions within individual DFS iterations by keeping a rela-
tively small amount of extra memory which we can show is
bounded by the error in the heuristic. The additional mem-
ory required is exponential not in the solution depth, but only
in the difference between the solution depth and the esti-
mated solution depth. We show 2- to 14-fold speedups in
one domain, and 2- to 26-fold speedups in a majority of the
problems in the other. We also sketch proofs of optimality
and completeness for IEA*, and note that this algorithm is
particularly efficient for solving implicitly-defined general
graph search problems.

References
Bjornsson, Y.; Enzenberger, M.; Holte, R. C.; and Schaeffer,
J. 2005. Fringe search: Beating A* at pathfinding on game
maps. In IEEE Symposium on Computational Intelligence
and Games.
Dechter, R., and Pearl, J. 1985. Generalized best-first search
strategies and the optimality of A*. Journal of the ACM
32(3):505–536.
Dillenburg, J. F., and Nelson, P. C. 1993. Improving the
efficiency of depth-first search by cycle elimination. Infor-
mation Processing Letters 45:5–10.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost

paths. IEEE Transactions on Systems Science and Cyber-
netics SSC-4(2):100–107.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1972. Cor-
rection to A formal basis for the heuristic determination of
minimum cost paths. SIGART Newsletter 37:28–29.
Korf, R. E. 1985. Depth-first iterative-deepening: an optimal
admissible tree search. Artificial Intelligence 27:97–109.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies
for Computer Problem Solving. Reading, Massachusetts:
Addison-Wesley.
Reinefeld, A., and Marsland, T. A. 1994. Enhanced
iterative-deepening search. IEEE Transactions on Pattern
Analysis and Machine Intelligence 16:701–710.
Sen, A. K., and Bagchi, A. 1989. Fast recursive formulations
for best-first search that allow controlled use of memory. In
IJCAI, 297–302.
Taylor, L. A., and Korf, R. E. 1993. Pruning duplicate nodes
in depth-first search. In National Conference on Artificial
Intelligence, 756–761.

