
Working Notes of the AAAI Fall Symposium on Negotiation Methods for Autonomous Cooperative Systems
North Falmouth, Massachusetts

Multi-Agent Mission Coordination via Negotiation

David J. Musliner and Kurt D. Krebsbach
Automated Reasoning Group
Honeywell Laboratories
3660 Technology Drive
Minneapolis, MN 55418

{musliner,krebsbac}@htc.honeywell.com

Introduction

This paper is intended to give an intuitive overview of

the operations of MASA-CIRCA, the Multi-Agent Self-

Adaptive Cooperative Intelligent Real-Time Control

Architecture. While individual CIRCA agents have

been under development for some time, we have only

recently begun developing the architecture’s multi-

agent capabilities. This paper briefly describes the

high-level negotiation functions that MASA-CIRCA

currently uses to coordinate multiple agents, in the

context of an implemented demonstration scenario.

As an architecture for autonomous control, CIRCA

is distinguished by its strong emphasis on real-time per-

formance guarantees. Individual CIRCA agents, as il-

lustrated in Figure 1, combine two levels of planning

and automatic controller synthesis modules with a plan

executive (the Real-Time Subsystem) that is respon-

sible for reactively executing automatically-generated

control rules in hard real time. CIRCA is designed to

adapt, on the fly, to changes in its environment and

its capabilities by building and executing new reac-

tive plans. Because CIRCA reasons explicitly about

the timing constraints that its reactive plans must

meet, and because it plan executive provides rigidly

predictable performance, CIRCA supports the perfor-

mance guarantees required for autonomous systems ap-

plications in mission-critical real-time domains.

In the new multi-agent versions of CIRCA, we are ex-

tending these real-time performance characteristics to

a team of coordinating CIRCA agents, each controlling

a separate platform (e.g., a team of unmanned combat

air vehicles, or UCAVs). As shown in Figure 2, the

CIRCA agents communicate and negotiate at all levels

of the architecture to coordinate their activities.

The AMP is responsible for the highest-level con-

Adaptive
Mission
Planner

Feedback
Data

Reactive
Plans

System

Real
Time

Feedback
Data

Subgoals,
Configurations

Module

Controller
Synthesis

Figure 1: Abstracted view of a single CIRCA agent

that provides real-time planning and con-

trol.

CSM

RTS

AMP

CSM

RTS

AMP

Real-Time
Reactions

Negotiations

Planned Actions,
Planned

Goals
Roles,

Figure 2: Two CIRCA agents negotiate to dynami-

cally allocate team resources.



trol of a CIRCA agent (Musliner, Durfee, & Shin 1995;

Musliner et al. 1999), managing the agent’s respon-

sibilities (by negotiating with other agents) and the

agent’s deliberation activity. The AMP performs in-

telligent allocation of deliberation effort via a negotia-

tion and tradeoff process with the Controller Synthesis

Module (CSM) (Musliner 2000). Our current demon-

stration illustrates early forms of the coordination and

negotiation that occurs between AMPs. Before de-

scribing this demonstration, we provide an overview

of the AMP’s operation and brief introduction to the

display systems used to illustrate CIRCA’s operations.

Adaptive Mission Planner Overview

At the highest level, the AMP’s primary responsibility

is managing an individual agent’s tasks and coordinat-

ing with other agents to achieve the overall team mis-

sion. The AMP does this by determining what tasks

are its responsibilities through negotiation with other

cooperating agents, and then arranging to have plans

(controllers) generated to successfully address those

tasks during the execution of the mission.

The overall team mission is divided into phases,

which correspond to modes or time intervals that share

a fundamental set of common goals, threats, and dy-

namics. For example, our UCAV scenarios include

missions that have phases such as ingress, attack, and

egress. The ingress phase is distinguished from the at-

tack phase both by the characteristics of the flight path

(e.g., a nap-of-earth stealthy approach vs. a popup ma-

neuver very near a target) and by the expected threats

(e.g., the types of missile threats present at different

altitudes) and goals (e.g., reaching the target zone vs.

deploying a weapon).

In this context, the team of CIRCA agents must

arrange to have different agents responsible for dif-

ferent goals and threats, depending on their avail-

able capabilities and resources (e.g., ECM equipment

and weapons loadout). For each mission phase, the

CIRCA agents must have plans, or controllers, that

are custom-designed (either before or during mission

execution) to execute the mission phase and make

the best possible effort to achieve the goals and de-

feat the threats associated with the phase. The CSM,

described elsewhere (Musliner, Durfee, & Shin 1993;

1995), is capable of automatically building these con-

trollers, but this controller synthesis can be a complex

and time-consuming process. The complexity (and

hence duration) of the CSM process can be controlled

by varying the problem configuration that is passed

to the CSM to describe the characteristics of the de-

sired controller for a particular mission phase (Musliner

2000).

The AMP is thus also responsible for determining

which mission phase the CSM is trying to build a con-

troller for at any moment, and how hard it should work

to do so, by modifying the phase problem configura-

tions. This is what we call the AMP’s deliberation

scheduling function. In the current implementation,

this corresponds to altering which of the phase’s poten-

tial goals and threats should be considered. In future

versions, even more flexible techniques will be available

to adjust the CSM problem-solving complexity.

Given a problem configuration, the CSM projects fu-

ture world states and plans actions that keep the sys-

tem safe and direct it towards its goals. The CSM also

computes deadlines on these actions, indicating how

quickly they must occur after a particular world state

is reached, to avoid catastrophic failures (e.g., destruc-

tion by a threatening surface-to-air missile). The CSM

reduces these action plans to cyclic schedules of Test-

Action Pairs (TAPs), which test the state of the world

and take a chosen action. The RTS can then execute

these TAP schedules, predictably enforcing the timing

constraints on reaction planned by the CSM to keep

the system safe and achieve its goals.

Inter-Agent Negotiation

Leveraging significant amounts of existing code that we

wrote for an internally-funded project on distributed

scheduling, we have already built and demonstrated

multiple CIRCA AMPs negotiating over the alloca-

tion of mission-level responsibilities (e.g., handlingmis-

sile threats). Using a Contract-Net-like arrangement,

the AMPs submit bids to handle these responsibili-

ties (Smith 1977). Currently the computation of bid

values is artificial, but eventually it will reflect the ex-

pected costs and benefits that an agent expects to incur

if it assumes a particular responsibility. For example,

an agent might assign a certain value to planning to use

its electronic countermeasures (ECM) to defeat certain

types of radar-guided missile threats.



Each contract goes through a series of modes as it is

processed by the system:

New — New contracts are formed when an agent

learns of a potential threat or goal for a particular

mission phase. In the current implementation, only

the MASTER learns of new threats and goals. This

simplification was made purely for convenience, and

is not constrained by the current infrastructure. The

agent that learns of the new threat or goal forms a

new contract object and broadcasts an announce-

ment of its contents to all the agents. The agent is

termed the contractor agent for that contract.

Announced — Once a contract is announced, each

agent is responsible for replying with a bid that is

used to determine which agent will assume respon-

sibility for the contract. Currently, bids are essen-

tially pre-specified in the domain description that

indicates which agent can accomplish which types of

tasks. For example, a domain description may say

that a certain agent is highly capable of handling a

particular type of threat, and it should bid a cer-

tain constant value (e.g., 10). In the future, the bid

will be computed by more complex methods that as-

sess the agent’s capabilities, physical resources, load

level, and ability to compute a new controller in time.

Awarded — Once the contractor agent receives all of

the bids for a particular contract, it awards the con-

tract to the highest bidder, notifies the other agents

they are not the winner, and updates the contract

status.

Planned-for — The agent that is awarded a new

contract is responsible for building a new controller

that can handle the corresponding new threat or

goal. When the controller synthesis process is com-

plete, the contract status is set to :planned-for.

Completed — Each threat or goal is specific to a

mission phase. When that mission phase has been

completed (e.g., the aircraft has completed the at-

tack phase), the associated threat/goal contracts are

marked :completed.

Failed — If an agent fails to generate a plan for a con-

tract, or it is disabled and thus unable to execute the

controllers it has generated, the contract is marked

failed and the contractor agent re-announces it for

new bids. The re-negotiation proceeds just as with

Figure 3: The AMP Information Display depicts

AMP status.

the original process, so that a new agent is awarded

the contract and builds a controller to handle it.

Currently, the AMPs can negotiate over contracts

that represent responsibility for threats and goals.

When awarded a contract for a threat or goal, the

AMP can then run the CSM to synthesize customized

controllers using CSM problem configurations that are

automatically generated to describe the negotiated re-

sponsibilities.

In addition, the AMPs can handle messages saying

that another AMP has died1, and will issue contracts

to re-negotiate the responsibilities formerly held by the

dead agent. The AMP maintains data structures to

generate and track multiple CSM problem configura-

tions for each mission phase, and it can store the asso-

ciated controllers generated by the CSM. In addition,

the AMP can download the controllers to the RTS as

soon as they are available.

AMP Information Display

To provide a compact graphical indication of what

functions the AMP is performing, we have developed

an AMP Information Display (AID). The AMP sends

its status information to the AID over a socket. Il-

lustrated in Figure 3, the AID gives the observer vis-

ibility into the multi-agent negotiation and planning

processes.

At the top of the AID, two labels indicate which

CIRCA agent the display is describing, and what mis-

sion phase that agent is currently executing. Below

1The underlying socket communications layer inherently

recognizes the loss of connection and returns an error.



those lines, two light bars labeled “IN COMM” and

“OUT COMM” flash when the agent is receiving or

sending over its socket connections to other agents.

Further down, the aircraft icon will display the status

of various aircraft subsystems. This aspect of the AID

is obviously domain-dependent, and it is not fully im-

plemented yet. In the future, we plan to add iconic rep-

resentations of engines, defensive systems, and other

subsystems subject to damage and imperfect opera-

tion. Currently, the only functioning element of the

iconic display is the center diamond, which acts as a

“heartbeat” for the AMP, blinking periodically when

the AMP is idle but still functioning.

Below the iconic display, a set of lines display the

status of each of the contracts in the overall multi-agent

system, according to the single CIRCA agent’s view.

Each contract represents a threat or goal that must be

handled in a particular mission phase. Each line has a

text label identifying the contract it represents, and a

color (not apparent in black-and-white printouts) that

describes the status of the contract:

Red indicates that a new threat/goal contract has ar-

rived and is not yet even announced for bids by other

agents.

Pink indicates that a new contract has been an-

nounced for bids, but all the bids have not yet been

received.

Yellow indicates that this agent has been awarded

this contract (i.e., it has accepted responsibility to

“handle” this goal or threat).

Green indicates that this agent has successfully gen-

erated a new controller (plan) to handle this con-

tract.

Gray indicates that another agent has responsibility

for this contract.

Purple indicates that this agent was previously re-

sponsible for this contract, but is now disabled and

will not handle the associated threat/goal.

As the AMP grows in capabilities, especially in its

ability to make tradeoffs between deliberation time and

the expected performance of synthesized controllers,

we will extend the AID to dynamically visualize these

tradeoffs and give the observer some insight into the op-

erations of the AMP. For example, we expect to have

gauges, graphs, or other intuitive graphical representa-

Figure 4: The RTS Information Display shows what

each RTS is doing at any time.

tions showing performance characteristics such as the

likelihood of failure for different mission phases using

the current-best controllers, etc.

RTS Information Display

The RTS can execute TAPs at extremely high

speeds, so it is very difficult for an observer to follow

its runtime activities. However, it can be very useful

to have some indications of what the RTS is doing. To

that end, we have developed an RTS Information Dis-

play (RID). As illustrated in Figure 4, the RID uses

flashing bars of color to indicate each primitive test or

action the RTS executes. As these color bars flicker

rapidly on and off, the observer can recognize different

patterns of RTS activity, and can also discern individ-

ual distinct actions that are infrequent. If a pattern of

RTS activity persists for a few seconds, the observer

can also identify specific activities the RTS is perform-

ing, by mapping the flashing bars back to the labels on

the left edge of the display.

Recall that the AMP sends its status information

to the AID over a socket. We could have designed

the RTS/RID interactions in a similar way. However,

because that socket communication could add signifi-

cant overhead to the RTS operations, we have chosen

instead to build this version of the RID directly into

the flight simulation system used for our demonstra-

tion. This avoids both additional communication for

the RTS and additional screen real-estate: the RID

is drawn as a “stencil” over the top of the simulation

display.

This approach has one notable weakness: the RID

can only display RTS tests and actions that are sent to



Figure 5: This mission overlay shows the expected

path with known and unknown threats

and targets.

the simulator (i.e., those that interact with the world

outside of CIRCA); it cannot show the RTS activities

that are purely internal. For example, several TAPs

in every TAP schedule are dedicated to downloading

new TAP schedules, switching between TAP schedules

when a suitable state is reached, etc. These “internal”

TAPs cannot be visualized on the RID embedded inside

the simulator.

For situations where visualizing these internal activ-

ities is also important, we have a different version of

the RID available that runs in a standalone mode sep-

arately from the simulation environment, but is cur-

rently only compatible with Xwindows displays. This

version can show all RTS primitives calls, including in-

ternal functions such as reading in new TAP schedules

(controllers).

Demonstration Scenario

Goal

The primary goal of this demonstration scenario is to

illustrate negotiation between CIRCA agents and dy-

namic generation of controllers on the fly. The demon-

stration shows the agents negotiating diverse responsi-

bilities and synthesizing customized controllers at the

start of the mission, as well as re-negotiating roles and

dynamically building new controllers during the mis-

sion when unexpected circumstances arise.

Mission

The demonstration scenario contains a flight of five

unmanned F16-type fighter aircraft (MASTER and WING1

through WING4) whose mission is to destroy a ground

target while defending themselves against attack. Fig-

ure 5 shows a top-down view of the planned mission

flight path, along with threat and goal location icons.

The mission consists of three phases which correspond

to three distinguished flight path segments: ingress, at-

tack, and egress. During the mission, the AMPs need

to create plans that account for several goals and ex-

pected threats:

1. Defending against IR-guided missile threats during

the ingress phase.

2. Defending against IR-guided and radar-guided mis-

sile threats during the attack phase.

3. Destroying the target during the attack phase.

4. Defending against IR-guided missile threats during

the egress phase.

In addition, one unexpected threat is displayed in Fig-

ure 5: a radar-guided missile site along the ingress path

that is not reported to the CIRCA agents (presumably

because it is unknown to our forces). This unexpected

threat will turn out to be fatal to WING4, and this leads

to the re-negotiation and replanning activity.

Demonstration Storyboard

When the mission begins, the fighters negotiate respon-

sibilities for the first time. The MASTER is tasked with

defending against radar-guided SAM sites during the

attack phase of the mission. WING1 gets this respon-

sibility during the egress phase. IR threats are han-

dled by WING1 during ingress, WING3 during attack, and

WING4 during egress. Responsibility for destroying the

target is given to WING4. Once plans are constructed

for the initial phases, the aircraft begin flying the mis-

sion (even before controllers for the latter phases are

complete).

Before the aircraft leave the runway, controllers have

been generated for all of the mission phases and the

AID shows green lights for all of the goal and threat

contracts. Then, shortly after the aircraft pass over

their first waypoint, the anticipated IR threat attacks.

Figure 4 illustrates the scene where WING1 has been

watching for IR threats and has begun deploying flares

to confuse the incoming IR-guided missile. By repeat-



Figure 6: WING4 exploding.

edly launching flares until the missile explodes on one,

WING1 successfully defeats the IR-guided missile.

A short time later the aircraft pass near the unex-

pected radar-guided missile site, which attacks. Unfor-

tunately, since we did not tell the CIRCA agents about

this potential threat, they have not built controllers

that look for this danger. Unawares and unresponsive,

WING4 is destroyed (see Figure 6).

The AMPs immediately detect that WING4 is dead,

and re-negotiate its contract responsibilities. WING2

gets the contract for destroying the target and WING3

gets the egress IR threat. Within three seconds the re-

negotiation process and the new CSM invocations are

complete, and the agents have created new controllers

to handle their altered responsibilities. With all con-

tract lights green (as shown in Figure 7), the team has

recovered and the mission is still headed for success.

The aircraft continue to fly along the ingress flight

route to waypoint four, where they enter the attack

phase. When the target is in range, WING2 fires a

surface-to-ground missile. While that attack missile

is on its way to the target, the fighters are threat-

ened again (as illustrated in Figure 7). This time, the

MASTER leads the flight into evasive maneuvers that de-

feat the radar-guided SAM. Figure 7 shows the aircraft

at this time. During the evasive maneuvers, the sec-

ond SAM site near the target launches an IR-guided

missile at the team. In response, WING3 deploys flares

to defeat that missile. The aircraft then proceed safely

to waypoint five. At waypoint five, the flight enters

the egress phase of flight, the CIRCA agents begin ex-

Figure 7: After WING4 dies, the surviving CIRCA

agents re-negotiate and generate new

plans to handle its responsibilities and

ensure mission success. Moments later,

as the attack missile arcs in, the CIRCA

team takes evasive maneuvers to avoid a
rising radar-guided missile.

ecuting a different set of controllers that are concerned

about a different set of threats and goals, and the sce-

nario proceeds without further incident.

Related Work

A wide variety of prior work exists on building multi-

agent systems that negotiate to coordinate their be-

havior. As noted earlier, we have used the Contract

Net (Smith 1977) approach almost without change, so

we are not claiming a unique contribution in negotia-

tion methods. Rather, we hope to apply existing meth-

ods (and develop new ones as necessary) in a novel con-

text: the hard real-time domains, online controller syn-

thesis, and performance guarantees of CIRCA. The ini-

tial demonstration described above has accomplished

part of our objective. While we demonstrated inter-

agent negotiation that impacts CIRCA’s online con-

troller synthesis and runtime performance guarantees,

that negotiation itself has not yet been subjected to the

real-time restrictions and AMP deliberation scheduling

paradigms (Goldman, Musliner, & Krebsbach 2001) we

are developing. In the future, we expect that negoti-

ation with other agents will be just another tool in

the AMP’s kit of possible approaches to trading off



performance and safety (Musliner 2000). When un-

able to build a fully-guaranteed controller for all of

the goals and possible threats in a particular mission

phase, the AMP may choose to negotiate with other

agents to offload some responsibilities. The time that

this negotiation itself takes will be considered in de-

ciding whether distributed or purely local performance

tradeoffs should be attempted.

Acknowledgments

This material is based upon work supported by

DARPA/ITO and the Air Force Research Laboratory

under Contract No. F30602-00-C-0017. Any opin-

ions, findings and conclusions, or recommendations ex-

pressed in this material are those of the authors and do

not necessarily reflect the views of DARPA, the U.S.

Government, or the Air Force Research Laboratory.

The demonstration described in this paper is the result

of work with colleagues including Jeff Rye and Robert

Goldman.

References

Goldman, R. P.; Musliner, D. J.; and Krebsbach,
K. D. 2001. Managing online self-adaptation in real-
time environments. In Proc. Second International
Workshop on Self Adaptive Software.

Musliner, D. J.; Goldman, R. P.; Pelican, M. J.; and
Krebsbach, K. D. 1999. Self-adaptive software for
hard real-time environments. IEEE Intelligent Sys-
tems 14(4):23–29.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1993.
CIRCA: a cooperative intelligent real-time control ar-
chitecture. IEEE Trans. Systems, Man, and Cyber-
netics 23(6):1561–1574.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1995.
World modeling for the dynamic construction of real-
time control plans. Artificial Intelligence 74(1):83–
127.

Musliner, D. J. 2000. Imposing real-time constraints
on self-adaptive controller synthesis. In Proc. Int’l
Workshop on Self-Adaptive Software.

Smith, R. 1977. The contract net: A formalism for
the control of distributed problem solving. In Proc.
Int’l Joint Conf. on Artificial Intelligence, volume 1,
472.


