
Appears in Proc. Third International Workshop on Self Adaptive Software
Rosslyn, VA, June 2003

Deliberation Scheduling Strategies for Adaptive Mission Planning

in Real-Time Environments

David J. Musliner

Honeywell Laboratories

musliner@htc.honeywell.com

Robert P. Goldman

SIFT, LLC

rpgoldman@sift.info

Kurt D. Krebsbach

Lawrence University

kurt.krebsbach@lawrence.edu

1 Introduction

We are developing the Multi-Agent Self-Adaptive Cooperative Intelligent Real-Time Control

Architecture (MASA-CIRCA) to address high-stakes, mission-critical, hazardous domains. [5, 6].

MASA-CIRCA is a domain-independent architecture for intelligent, self-adaptive autonomous con-

trol systems that can be applied to hard real-time, mission-critical applications. MASA-CIRCA

includes a Controller Synthesis Module (CSM) that can automatically synthesize reactive con-

trollers for environments that include timed discrete dynamics. In order to best tailor its behavior

to the current context, MASA-CIRCA will sequence through a number of different controllers, one

for each phase of the mission (see Figure 1).

This controller synthesis process can occur both offline, before the system begins operating in

the environment, and online, during execution of phase controllers. Online controller synthesis is

used to adapt to changing circumstances and to continually improve the quality of controllers for

current and future mission phases. The controller synthesis process operates under the control

of MASA-CIRCA’s Adaptive Mission Planner (AMP). In general, the MASA-CIRCA agent is

overconstrained in the sense that it cannot produce optimal plans for all phases in time to be of

use. The issue is particularly acute because the controller synthesis problem is intractable in the

worst case.

Because of this bounded rationality, the AMP must actively manage the CSM’s inference. There

is no point in developing an optimal controller if that controller is fielded long after it is no longer

needed. This inference management problem is the problem of deliberation scheduling, and has been

the center of much of our recent work on MASA-CIRCA. We take an approximate decision-theoretic

approach to the MASA-CIRCA deliberation scheduling problem: decision-theoretic, because we

attempt to optimally allocate the CSM’s reasoning time; approximate because full formulations of

the problem are intractable and some formulations involve an infinite regress.

We are exploring the issues of real-time intelligent control in the context of managing the

autonomous controls of a self-adaptive unmanned aerial vehicle (UAV). The adaptation may be

necessary for a variety of reasons – because the mission is changed in-flight, because some aircraft

equipment fails or is damaged, because the weather does not cooperate, or perhaps because its

original mission plans were formed quickly and were never optimized. For this reason, this con-

troller synthesis can occur both offline, before the system begins operating in the environment, and

1



GOAL

START

ENTIRE PLAN SPACE

INDIVIDUAL PHASE PLANS

Figure 1: MASA-CIRCA agents sequence through multiple timed controllers over the course

of multiple plan phases.

online, during execution of phase plans. Online controller synthesis is used to adapt to changing

circumstances and to continually improve the quality of controllers for current and future mission

phases.

In previous papers, we have framed the problem of deliberation scheduling for MASA-CIRCA.

We described how MASA-CIRCA can modify problems it is trying to solve to adjust planning

time by trading off plan quality [3]. In a later paper [1], we described how to manage the tradeoff

process, i.e., how to decide what part of a mission control plan we should attempt to improve at

each point of time. We presented a Markov Decision Process (MDP) model of the deliberation

scheduling problem. Since the MDP is very difficult to solve, we also presented greedy (myopic)

approximations to the optimal solution. In those experiments we showed that a discounted myopic

approximation technique provided good performance with very limited computational costs. We

also compared the performance of the discounted greedy approximation with other strawman agents

that attempt to manage deliberation using easy-to-compute heuristics.

In this paper we describe how we have integrated deliberation scheduling into the MASA-CIRCA

AMP. We present results on the performance of several agents in an example scenario from the UAV

domain. Once again, we compare the greedy approximation technique with other strawman agents.

This paper shows how the qualitatively different behaviors of different deliberation managers affects

mission performance.

2 Background

2.1 The MASA-CIRCA Architecture

We work on deliberation scheduling in the context of CIRCA, the Cooperative Intelligent Real-

Time Control Architecture. As illustrated in Figure 2, CIRCA combines on-line AI planning and

formal verification methods that generate customized plans (controllers) with real-time reactive

2



Runtime Coordination

Module
Synthesis
Controller

Feedback Data

Subgoals,
Problem Configurations

Other AMPs

Role Negotiation

Other RTSs

Adaptive
Mission
Planner

Real
Time

Subsystem

Feedback Data
Reactive Plans

The World

Figure 2: The CIRCA architecture.

execution of those plans. CIRCA was designed to control autonomous systems operating in dynamic

and hazardous domains where real-time performance is crucial. For example, when controlling

an Unmanned Aerial Vehicle the system may face a wide variety of hazardous situations (e.g.,

enemy threats such as surface-to-air missiles, equipment failures) that require responses before

environmentally-imposed deadlines (e.g., the arrival of an incoming missile). Furthermore, the full

spectrum of these threats may exceed the system’s ability to monitor and respond, so that it must

focus its attention on only the most likely or most hazardous in different situations. In that case,

the system must provide mission-specific control plans (linking active sensing to responses) that

may change as the mission progresses.

For example, a UAV may have to focus its threat detection and sensor processing hardware on

different tasks throughout a mission, shifting from defensive threat detection during an ingress to

surveillance and target recognition during the reconnaissance or attack phase. While pre-mission

planning may be used to create customized controllers for the anticipated mission profile, on-the-

fly planning may also be required when the mission changes or unexpected situations arise (e.g.,

unexpected enemy activity or equipment failures).

CIRCA’s Controller Synthesis Module (CSM) is designed to construct such customized control

plans using a combination of heuristic state space search and formal verification []. The CSM

takes in a problem description that specifies the anticipated initial situation, goals (desired state

characteristics), threats (uncontrollable environmental transitions) and possible actions (control-

lable transitions). The transition models include timing characteristics that specify how fast the

various transitions can occur. Using this information, the CSM searches for an assignment of con-

trollable actions to each anticipated reachable state, such that the resulting state space is closed

and drives the system towards its goals while avoiding specified forms of failure. The CSM uses

formal verification techniques to check its plans and ensure that failures are not reachable [2].

For the purposes of this paper, the key point here is that the CSM is a very complex planning

system whose runtime is highly variable, since it solves several intractable problems in the process

3



of generating new plans. Thus building new plans on-the-fly (or even during limited pre-mission

planning time) can be a challenging task, and requires active control by the higher layer of CIRCA,

the Adaptive Mission Planner (AMP).

The CIRCA Adaptive Mission Planner (AMP) is responsible for the highest-level control of

a CIRCA agent [5, 6], determining and modifying the agent’s responsibilities (threats to handle,

mission goals to achieve), controlling the agent’s reasoning (what plans to construct), and managing

the agent’s deliberation resources (i.e., how best to use computation time to improve the overall

mission plan). More specifically, the AMP manages the agent’s responsibilities by negotiating with

other agents via contract bidding. It controls the agent’s reasoning both by modifying problem

configurations for the CSM, and by invoking (or halting) the CSM when appropriate. Finally, the

AMP manages the agent’s deliberation resources by scheduling the CSM to improve certain plans

in a manner that yields the highest utility for the mission plan as a whole.

2.2 Problem Structure

A team of MASA-CIRCA agents will be given missions that are divided up into phases. The

phases correspond to modes or time intervals that share a set of common goals, threats, and

dynamics. For example, our military UAV scenarios include missions that have phases such as

ingress, attack, and egress. The ingress phase is distinguished from the attack phase both by the

characteristics of the flight path (e.g., a nap-of-earth stealthy approach vs. a popup maneuver very

near a target) and by the expected threats (e.g., the types of missile threats present at different

altitudes) and goals (e.g., reaching the target zone vs. deploying a weapon).

The team must arrange to have agents take responsibility for different goals and threats, de-

pending on their available capabilities and resources (e.g., ECM equipment and weapons loadout).

These goals and threats vary from one phase to the next. In fact, the mission is typically split

into phases specifically to decompose the overall mission into manageable chunks aligned with a

common set of threats, or a common goal which, when achieved, signals the end of that phase. The

team of agents will allocate tasks among itself by a bidding process, with agents having different

endowments depending on how appropriate they are to handle a given task.

For each mission phase, each MASA-CIRCA agent must have a plan (or controller) that is

custom-designed to make the best possible effort to achieve the goals and defeat the threats as-

sociated with the phase. These controllers may be generated before or during mission execution,

depending on the circumstances. The Controller Synthesis Module (CSM), described elsewhere, is

capable of automatically building these controllers, but this controller synthesis can be a complex

and time-consuming process.

The complexity (and hence duration) of the synthesis process can be controlled by varying

the problem configuration that is passed to the CSM. The problem configuration describes the

characteristics of the desired controller for a particular mission phase [4]. The problem configuration

contains information about the initial state of the world, goals to achieve, threats that are present,

state transitions that can happen due to the world, and actions available to the agent to affect

the world. By varying these details, the AMP can make a planning problem fall anywhere in a

complexity spectrum from very simple to infeasible. For example, consider an agent that must fly

over a particular segment of airspace in which we expect there to be two surface to air missile (SAM)

4



sites. We might give the CSM a problem configuration with the goal of reaching the waypoint at

the end of the flight segment, and the two goals of suppressing the two SAM sites. Alternatively,

if that was too difficult, we could instruct the CSM to reach the final waypoint while simply using

passive countermeasures to evade the SAMs.

2.3 Predictive Deliberation Management

One of the primary responsibilities of the AMP is to determine which mission phase the CSM is

trying to build a controller for at any moment, and how hard it should work to do so, by modifying

the phase problem configurations. This is what we mean by the AMP’s deliberation management

function. In each phase, the more threats that can be handled, and the more goals that can be

achieved, the higher the probability that the team will achieve its goals and survive the mission.

Thus, the problem can be cast as follows: Given a set of planning phases, quality measures of the

current plan for each phase, a set of tradeoff methods (i.e., improvement operators) applicable in

each phase, and some amount of time to try to improve one or more of the current plans, how

should the AMP allocate the next segment of time to improve the overall expected utility of the

mission plan as a whole? Note that while we discuss these two aspects of the problem separately,

the two aspects interact, and the decisions are made together.

To effectively decide what deliberation should happen now, the AMP must consider the potential

deliberation schedule into the future. For example, the AMPmight consider starting a lower-priority

CSM task earlier if there is a shorter window of opportunity in which to execute that task, or the

expected execution time is longer. In this case, the AMP would also need to consider whether

it expects that this will still leave time to execute the higher-priority task later. As we will see,

more efficient, but incomplete approaches to the problem can suffer from local maxima, and miss

solutions that require this type of further lookahead and more complex analysis.

The second part of the problem is to select what improvement to apply to the selected phase.

which of several improvement operators to apply to the phase it has selected. The AMP may

improve a phase’s controller by replanning to generate a new controller that handles more threats

or more goals. Through experiments, we have developed a model of the performance of the CSM

when given varying number of threats and goals to handle. For various numbers of threats and

goals, we have developed cumulative probability functions that record the probability of successfully

completing a CSM run as time increases. We use this to determine the payoff the agent will receive

for committing time to various CSM actions. Note that since MASA-CIRCA is a hard real-time

system, the CSM cannot simply add more threat- and goal-handling to improve the plan. MASA-

CIRCA’s RTS ability to react to multiple events is limited by the available processing power, and

all reactions must be guaranteed to run to completion within their deadlines. So it is quite possible

that the system cannot handle all threats and goals, and must sacrifice some to cover others.

2.4 Combinational Configurations

As discussed earlier, the AMP is responsible for downloading one problem configuration at a

time for the CSM to work on. This configuration embodies a planning problem, i.e., an initial

state, threats, goals, actions at the agent’s disposal, etc. A combinational configuration, then is

a problem configuration that the AMP automatically generates when it learns what threats and

goals are in each phase.

5



The AMP will enumerate and consider combinations of different goals and threats. For instance,

a stand-alone agent faced with a phase with threats T1 and T2 and goal G1, will consider synthesis

for the combinations G1, T1, T2, G1+T1, G1+T2, T1+T2, and G1+T1+T2. When considering

improvements to an existing plan, of course, the AMP should never consider plans that handle

fewer features than the existing one. E.g. the AMP will not consider the singleton set T1 if the

system already has a controller that handles T1+G1.

In a multi-agent team context, deliberation management interacts with contracting. Consider a

case where the agent described above was part of a team and had won contracts to handle T1, T2,

and G1. In that case, if the AMP were later to find that it could only handle T1+T2 or T1+G1,

it should renege on its contract for either G1 or T2. In that case the contract would again become

available for bids and another agent would take it over and handle it.

3 Beyond the MDP Model

In previous work, we studied a Markov Decision Process (MDP) model for MASA-CIRCA delib-

eration scheduling [1]. This model posed the problem of deliberation scheduling as one of choosing,

for each point in time, a plan improvement operator to apply to the set of phase plans. The MDP

made a number of simplifying assumptions, and was not actually integrated the MASA-CIRCA

architecture. However, the MDP model provided an opportunity to evaluate a number of com-

putationally inexpensive approximation methods for solving the deliberation scheduling problem.

Because the MDP was simple, we were able to evaluate those approximation methods against the

“gold standard” offered by dynamic programming algorithms for MDPs. Our early experiments

indicated that a myopic (greedy) approximation to the optimal solution provided a good tradeoff

of quality of results against computation time. We further showed that applying time-discounting

to the myopic algorithm helped avoid some suboptimal choices in the test domains.

While the MDP model provides a useful experimentation platform for comparing deliberation

scheduling algorithms in moderately complex domains, it omits several key characteristics of the

problem faced by CIRCA’s AMP. For example, while the abstract MDP model did represent plan

modification operators (calls to the CSM) that were expected take more than one time quantum,

the operators were modeled as always using a fixed amount of time. In contrast, the real CSM

may return earlier than expected if it finds a plan or determines that it cannot find one. Also, the

MDP model did not represent the goal-achieving quality of the plans: the MDP model concerned

itself only with threat-handling and assumed that the agent would achieve goals as long as it wasn’t

destroyed. No plan improvement operators could increase or decrease the agent’s probability of goal

achievement, except indirectly by affecting its survival probability. In contrast, the real agent can

build plans that are better or worse at goal achievement, and may need to tradeoff goal achievement

against survival. The agents may even choose to ignore some goals; thus the real agent may survive

a phase where a goal is present and yet acquire no reward.

While we could have added these characteristics to the MDP model, this would have increased

the complexity of optimal solving to the point where meaningful experimentation would have been

prohibitively expensive. Furthermore, the MDP model was only intended as a preliminary inves-

tigation into low-cost deliberation scheduling strategies that could operate effectively in our more

challenging, more dynamic simulated UAV environment.

6



(while (not *halt*)

(setf task (rank-and-choose #’priority #’max (tasks *self*)))

(cond (task ;; if there is a task selected, remove and execute it.

(setf (tasks *self*) (delete task (tasks *self*)))

(execute-task task)

(process-all-msgs))

(T ;; no tasks are ready; wait on inputs and flash heartbeat

(if (wait-for-input-available *sockets*

:timeout *heartbeat-period*)

(process-all-msgs)

(show-heartbeat)))))

Figure 3: Simplified Lisp code for the AMP outer loop, processing tasks and messages.

Thus we moved into building the myopic strategies investigated in the MDP model into the real

AMP code, to support experimentation and evaluation with the real CSM and real online challenges.

In the following section, we describe the AMP’s design features that support deliberation scheduling

and the extensions made to the strategies already discussed.

4 Deliberation Scheduling in the Adaptive Mission Planner

Our AMP prototype executes a fairly simple outer loop based on a “task” metaphor. Every

major function that the AMP can perform is encapsulated in a task object. For example, one of

the main tasks the AMP manages is telling the CSM what controller synthesis problems to work

on. Controller synthesis problems are represented by “problem configuration” objects that contain

all of the CSM API calls to describe the problem to the CSM. For each problem configuration that

has not yet been solved by the CSM, the AMP maintains a task object which, if executed, will

send the API commands to the CSM and wait for a solution in return. Similarly, the functions

to support inter-agent negotiation are encapsulated in task objects. When the CSM produces an

executable plan (controller) in response to a particular problem configuration, a new task is created

to indicate that the new plan can be downloaded to the executive (RTS).

Tasks have associated priorities that are used to order their execution. On each cycle through

the AMP outer loop, one of the highest-priority tasks is selected for execution and all waiting

incoming messages are processed. If no tasks are waiting to execute, the AMP blocks (periodically

flashing a heartbeat signal) until it gets an incoming message, which will trigger formation of a new

task. Figure 3 shows a slightly simplified version of the Lisp code used to implement this loop.

Task priorities can be static or computed dynamically, with different computation methods

depending on the class of the task object. For example, the class of tasks for downloading new

plans to the RTS have static priorities set quite high, so that the AMP will almost always prioritize

downloading new plans.

To implement deliberation scheduling that determines which problem configuration task should

be addressed next by the CSM, the planning tasks can be configured to use a dynamic priority

function that depends on many different factors. For example, we can implement deliberation

7



Figure 4: Each phase of the mission involves different threats and goals.

scheduling based on expected utility by having the system automatically incorporate information

about the expected time to finish the task, the expected benefits of the task (e.g., the improvement

in expected controller quality [and hence mission success] that will result if the CSM builds a new

controller for a particular phase), and the time at which the task solution is required (e.g., when

the aircraft will enter the mission phase for which this controller is intended).

5 Performance Results

5.1 Overview

In this section we describe experimental results that illustrate how the different deliberation

scheduling algorithms implemented in the AMP can result in widely varying performance. In

this experiment, we fly three simulated aircraft controlled by MASA-CIRCA agents through the

same mission scenario. The three aircraft fly essentially the same route through an environment

containing several threats and goals1. The three agents differ only in their use of different deliber-

ation scheduling algorithms; the point of the scenario is to show that more intelligent deliberation

scheduling algorithms can lead to dramatically improved performance results.

Figure 4 provides an overview of the mission, illustrating the sets of threats and goals present

in each phase. The mission begins with a simple takeoff phase in which the aircraft face no threats,

and only have the goal to reach the ingress phase, which is valued at 20 units of reward (utils). From

then on, progressing to the subsequent phases earns the aircraft 4 utils on each phase transition.

An aircraft may fail to progress to the next phase either by being destroyed by a missile threat or

by not flying along its planned path (e.g., continuously performing evasive maneuvers).

The phases have different expected durations, corresponding to how long the aircraft take to fly

each leg of the flight plan. In the figure, the expected durations are shown in seconds within the

phase circle. To make this a compact demonstration, we have made some of these phases shorter

than real combat missions (e.g., ingress might typically take more than two minutes).

In three of the phases, the aircraft are expected to face three kinds of missile threats, with

varying degrees of hazard. For example, the IR-missile threat is expected to be 40% lethal, meaning

that if the aircraft does not build a plan that anticipates and reacts to this threat, then the

threat will destroy the aircraft 40% of the time it tries to execute this mission. Fortunately, this

environment is considerably more lethal than real-world combat flying.

In the attack and egress phases, the aircraft also have goals to destroy two targets, valued at 200

1Their planned paths are identical, but their actual flown routes may differ due to variations in the use of evasive

maneuvers.

8



utils each. If the CSM is able to build a plan that includes the actions to destroy the target, then

the aircraft will accrue this value if it survives long enough to execute the associated fire-missile

reactions. Building a plan that only destroys the targets is quite easy. However, building a plan

that both defends against the different threats and destroys the targets is more time consuming.

Building a plan that handles all the threats and goals is not feasible in the available mission time.

As a result, the AMP must carefully control which planning problem it works on at any time.

Note that Figure 4 describes the scenario as it is described to the MASA-CIRCA agents for

their planning purposes. This description includes goals that are definitely present, and threats

that may be encountered. In the actual scenario that we flew the simulated aircraft against, the

aircraft do not encounter all of the potential threats. They actually only encounter radar-threat2

type threats in both the ingress and attack phases.

Also, to apply time pressure to the planning process, the CIRCA agents are told they must

begin flying the mission as soon as they have a baseline (simple) plan for the first phase, Takeoff.

Since building the takeoff plan takes well under one second, they essentially begin executing the

mission as soon as the mission description arrives. All of the planning for later phases is performed

literally “on the fly.”

The simplest aircraft, Agent S, uses a “shortest problem first” algorithm to decide which plan-

ning problem to work on next. A more complex aircraft, Agent U , uses a greedy deliberation

scheduling algorithm without discounting (highest incremental marginal utility first). The most

intelligent aircraft, Agent DU , uses a discounted greedy approach (highest discounted incremental

marginal utility first). The demonstration shows how the more intelligent deliberation scheduling

algorithms allow the latter aircraft to accomplish more of their goals and defeat more of their

threats, thus maximizing mission utility for the entire team.

5.2 Analysis of Agent S

Agent S sorts all of its possible deliberation tasks based on the expected amount of time to

complete each task, preferring the shortest. Recall that a deliberation task is a request to the CSM

to plan for a new problem configuration. In general, the more complex the configuration is (i.e.,

the more goals and threats), the longer the expected planning time.

Figure 5 illustrates which threats and goals are handled by the mission plans that Agent S

developed over the course of the entire team mission. Along the vertical axis, the rows correspond

to the various threats and goals in each mission phase. Time in flight is shown by the horizontal

axis. Dark bars in each row indicate the time period during which the aircraft has a plan that

handles the row’s respective threat or goal. As the CSM completes its reasoning for a particular

problem configuration for a particular mission phase, as selected by the deliberation scheduling

algorithm, the new plan is downloaded to the RTS and the configuration of dark bars changes.

For example, the first row indicates that Agent S immediately constructs a plan to handle the

IR-threat for the ingress phase, but quickly supplants that current plan with a plan to handle the

ingress radar threat instead, as shown on the second line. In an ideal situation, when each mission

phase begins the aircraft would already have a plan covering all threats and goals in the phase, and

that plan would persist unchanged throughout the phase. Charted as in Figure 5, this would look

something like a white staircase descending to the right, with dark bars above.

9



0

10

20

30

40

50

60

0 50 100 150 200 250 300 350

E
xp

ec
te

d 
F

ut
ur

e 
P

ay
of

f

Time (seconds)

ATTACK/DESTROY-TARGET

INGRESS/IR-THREAT
INGRESS/RADAR-THREAT

INGRESS/RADAR-THREAT2
ATTACK/IR-THREAT

ATTACK/RADAR-THREAT
ATTACK/RADAR-THREAT2

EGRESS/IR-THREAT
EGRESS/RADAR-THREAT

EGRESS/RADAR-THREAT2
EGRESS/DESTROY-TARGET

Takeoff Ingress Attack Egress

Figure 5: Gantt chart of threat and goal coverage for Agent S throughout the mission, along

with graph of expected future utility corresponding to plan coverage. Note that

the agent does not have plans to destroy the targets during the appropriate phases,

and thus acquires few utils.

10



0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350 400

E
xp

ec
te

d 
F

ut
ur

e 
P

ay
of

f

Time (quanta)

Shortest
Utility

Discounted Utility

Figure 6: Each agent’s expected payoff over the course of the mission.

A key characteristic of Agent S’s performance is that, lacking any better way to compare two

plans, the agent uses its preference for shorter-planning-time as an estimate of plan utility or quality.

As a result, whenever the CSM returns a successful plan, Agent S assumes that it is better than

any previously-generated plan for that mission phase and discards old plans, installing the new

one. In fact, all of the agents use this same behavior, since the deliberation scheduling algorithm is

expected to select for planning only those problem configurations that may lead to an improvement

in overall mission performance.

However, this leads to rather erratic behavior for Agent S, mostly because there can be ties in

estimated planning time for configurations with the same number of threats or goals. For example,

as can be seen in all three phases for Agent S in Figure 5, Agent S covers two threats (or one

threat and one goal) for a length of time, then switches to cover two others later in the mission.

While the other agents may similarly change which threats and goals they handle, they do so based

on expected utility measures only. Agent S’s impoverished estimate of plan utility (just expected

planning time) causes it to waste time generating plans that are not necessarily better than those

it already has.

Figure 6 illustrates the expected future utility that each agent has as the mission progresses.

This chart is somewhat complicated by the fact that it only includes future utility, so that as the

aircraft completes phases and earns utils, its expected future utility actually drops2. However,

comparison between the agents on this chart still shows what we hoped: Agent U and Agent DU

significantly outperform Agent S in both expected future utility and, as described later, in acquired

utility (corresponding to actual mission performance).

2The authors are currently planning to fix this problem by recording and plotting both earned and expected utility.

11



As shown in Figure 6, Agent S’s strategy allows it to successfully defend itself against the

radar-guided missile (radar-threat2) that may attack it in the ingress phase. When another

radar missile (also radar-threat2) attacks it in the attack phase, it is also prepared to defeat

it, as its current plan handles both radar-threat and radar-threat2 threats. However, it does

not handle the goal of destroying the target, and thus loses significant potential reward by not

achieving the main mission goal. This failure to achieve full mission success is largely due to the

fact that Agent S’s heuristic is not utility-based, and thus does not distinguish between reward

and survival, sometimes replacing valid, more valuable goal-achieving plans (e.g., radar-threat2

+ destroy-target), with non-goal-achieving plans that it considered slightly more complex based

on its cost-estimation function.

5.3 Analysis of Agent Agent U

Rather than computing a policy that indicates what actions should be taken in any possible

future state to maximize expected utility, Agent U myopically looks one state ahead along all of its

immediate action choices and selects the action that results in the mission plan with the highest

expected utility. Agent U need not compute a complete policy; instead, it computes the policy

lazily, determining the action choice for each state only when queried.

Because the greedy agent is making decisions with limited lookahead, it has trouble assessing

the relative merit of addressing near-term vs. far-term risks.

The threat and goal coverage history for Agent U is shown in Figure 7. Like Agent S, Agent

U is able to successfully defend itself against the radar-guided missile (radar-threat2) attacking

it in the ingress phase. However, when another radar missile attacks it in the attack phase, it is

not prepared to defeat it, and it is killed. It has not done the planning for radar-threat2 in the

attack phase because it is making decisions with limited lookahead, and it has trouble assessing the

relative merit of addressing near-term vs. far-term risks. This problem is exactly what discounting

is meant to address. Although there was ample time available to plan for both the attack-phase

radar threat and the egress-phase destroy-target goal, Agent U is “distracted” by the possibility

of destroying a high-value target in the next mission phase, and busily tries to build high-quality

plans for that future phase instead of for the current attack phase. As a result, it fails to develop

a good defensive plan, and is destroyed by a radar-guided missile3.

5.4 Analysis of Agent Agent DU

Finally, Figure 8 illustrates the threat and goal coverage profile for Agent DU .

Agent DU builds plans that handles all of the threats that actually occur, and achieves its

goals, achieving the maximum possible mission utility. It does not make the simple mistakes that

the uninformed Agent S does, because its deliberation scheduling strategy correctly trades off

threat-handling and goal-achievement by computing incremental marginal utility. In addition, its

discounting of later utility encourages it to defer planning for which it has more time, helping it to

avoid making the greedy mistakes that Agent U is prone to.

3The authors are working to develop a graphical method to display what phase the agent was attempting to plan

for at each time, to clarify this focus-of-attention point.

12



0

20

40

60

80

100

120

140

0 50 100 150 200 250 300 350

E
xp

ec
te

d 
F

ut
ur

e 
P

ay
of

f

Time (seconds)

INGRESS/IR-THREAT
INGRESS/RADAR-THREAT

INGRESS/RADAR-THREAT2
ATTACK/IR-THREAT

ATTACK/RADAR-THREAT
ATTACK/RADAR-THREAT2

ATTACK/DESTROY-TARGET
EGRESS/IR-THREAT

EGRESS/RADAR-THREAT
EGRESS/RADAR-THREAT2

EGRESS/DESTROY-TARGET

Takeoff Ingress Attack Destroyed

INGRESS/IR-THREAT
INGRESS/RADAR-THREAT

INGRESS/RADAR-THREAT2
ATTACK/IR-THREAT

ATTACK/RADAR-THREAT
ATTACK/RADAR-THREAT2

ATTACK/DESTROY-TARGET
EGRESS/IR-THREAT

EGRESS/RADAR-THREAT
EGRESS/RADAR-THREAT2

EGRESS/DESTROY-TARGET

Takeoff Ingress Attack Destroyed

Figure 7: Gantt chart of threat and goal coverage for Agent U throughout the mission, along

with graph of expected future utility corresponding to plan coverage. Note that

the agent is not prepared to defeat radar-threat2 in the attack phase, and it is

destroyed.

13



0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350

E
xp

ec
te

d 
F

ut
ur

e 
P

ay
of

f

Time (seconds)

INGRESS/RADAR-THREAT
INGRESS/RADAR-THREAT2

ATTACK/IR-THREAT
ATTACK/RADAR-THREAT

ATTACK/RADAR-THREAT2
ATTACK/DESTROY-TARGET

EGRESS/IR-THREAT
EGRESS/RADAR-THREAT

EGRESS/RADAR-THREAT2
EGRESS/DESTROY-TARGET

Takeoff Ingress Attack Egress

INGRESS/IR-THREAT

Figure 8: Gantt chart of threat and goal coverage for Agent DU throughout the mission,

along with graph of expected future utility corresponding to plan coverage. Note

that the agent has plans to accomplish the destroy-target goals by the time the

respective phases occur.

14



6 Conclusion

As described above, a preliminary version of the new AMP design incorporating several forms

of deliberation scheduling is now operational. The system can be easily configured to use different

deliberation scheduling algorithms by assigning different priority computation methods to classes

of tasks. The demonstration scenario we described shows how the more intelligent deliberation

scheduling algorithms allow Agent DU to accomplish more of its goals and survive longer.

One key future direction revolves around integrating our approaches to deliberation schedul-

ing and multi-agent negotiated coordination. As noted above, over-constrained agents in teams

should be able to move smoothly between tradeoff strategies in which they use on-line negotiation

to re-allocate roles and responsibilities (threats and goles) or locally choose to build partial, incom-

plete plans that do not satisfy all of their responsibilities. We plan to use our unified deliberation

scheduling scheme to allow this transparent integration of negotiation and local problem solving.

Negotiation will be just one more optional task that the AMP can choose among when it is con-

sidering what deliberation task is most appropriate next. This will require performance profiles

describing the expected performance of negotiation strategies, as well as time-bounded negotiation

behavior.

Acknowledgments

This material is based upon work supported by DARPA/ITO and the Air Force Research

Laboratory under Contract No. F30602-00-C-0017.

References

[1] R. P. Goldman, D. J. Musliner, and K. D. Krebsbach, “Managing Online Self-Adaptation in
Real-Time Environments,” in Proc. Second International Workshop on Self Adaptive Software,
2001.

[2] R. P. Goldman, D. J. Musliner, and M. J. Pelican, “Exploiting Implicit Representations in
Timed Automaton Verification for Controller Synthesis,” in Hybrid Systems: Computation and
Control (HSCC 2002), C. J. Tomlin and M. R. Greenstreet, editors, number 2289 in LNCS, pp.
225–238, March 2002.

[3] D. J. Musliner, “Imposing Real-Time Constraints on Self-Adaptive Controller Synthesis,” in
Proc. Int’l Workshop on Self-Adaptive Software, 2000.

[4] D. J. Musliner, “Imposing Real-Time Constraints on Self-Adaptive Controller Synthesis,” in
Self-Adaptive Software, number 1936 in LNCS, 2001.

[5] D. J. Musliner, E. H. Durfee, and K. G. Shin, “World Modeling for the Dynamic Construction
of Real-Time Control Plans,” Artificial Intelligence, vol. 74, no. 1, pp. 83–127, March 1995.

[6] D. J. Musliner, R. P. Goldman, M. J. Pelican, and K. D. Krebsbach, “Self-Adaptive Soft-
ware for Hard Real-Time Environments,” IEEE Intelligent Systems, vol. 14, no. 4, pp. 23–29,
July/August 1999.

15


