
Projection and Reaction for Decision Support in Refineries:
Combining Multiple Theories

Kurt D. Krebsbach
Department of Computer Science

Lawrence University
115 South Drew Street
Appleton, WI 54911

kurt.krebsbach@lawrence.edu

David J. Musliner
Honeywell Technology Center

3660 Technology Drive
Minneapolis, MN 55418

david.musliner@honeywell.com

Introduction
Modern decision support systems are forced to deal with
perpetual change in their environment: change that includes
a high degree of uncertainty over the current state of the
plant, effects of actions, accuracy of sensor readings, and
consistency of execution of approved procedures by plant
operators.

In this paper we report on AEGIS (Abnormal Event
Guidance and Information System), a large-scale automated
system to provide decision support for refinery operations
personnel (Krebsbach & Musliner 1997; Musliner & Kreb-
sbach 1998). In particular, we will concentrate on the com-
ponents concerned with setting goals, planning actions, ex-
ecuting those actions (or suggesting actions to be manually
executed), observing action effects, and recovering from un-
intended plant states. We will describe what worked well,
what did not, and why future such attempts must go outside
single theories of planning and acting to provide sufficiently
flexible decision support in complex environments.

Background: Refinery Control
Petrochemical refining is one of the largest and most com-
plex industrial endeavors worldwide. The functional heart of
a refinery is the Fluidized Catalytic Cracking Unit (FCCU).
As illustrated in Figure 1, the FCCU is primarily respon-
sible for converting crude oil (feed) into more useful prod-
ucts such as gasoline, kerosene, and butane (Leffler 1985).
The FCCU cracks the crude’s long hydrocarbon molecular
chains into shorter chains by combining the feed with a cat-
alyst at carefully controlled temperatures and pressures in
the riser and reactor vessels. The resulting shorter chains
are then sent downstream for separation into products in the
fractionator (not shown). The catalyst is sent through the
stripper and regenerator to burn off excess coke, and is then
reused.

Figure 2 illustrates how a typical state-of-the-art refin-
ery is controlled. The Distributed Control System (DCS)
is a large-scale programmable controller tied to plant sen-
sors (e.g., flow sensors, temperature sensors), plant actuators
(e.g., valves), and a graphical user interface. The DCS im-
plements thousands of simple Proportional Integral Deriva-

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Regenerator

Reactor

Product

Riser

Catalyst

Fresh
Catalyst

Flare

Slide valve

C
on

tr
ol

 lo
op

Air

Feed

Stripper

Spent

Temp
Sensor

Figure 1: A Fluidized Catalytic Cracking Unit.

tive (PID) control loops to make control moves based on
discrepancies between setpoints (SPs) and present values
(PVs). For example, as depicted in Figure 1, the dotted line
connecting the temperature sensor and the riser slide valve
denotes that the position of the slide valve is dependent on
the temperature being sensed in the riser. As the temper-
ature drops, the slide valve will be opened to increase the
flow of hot catalyst. A typical FCCU will have on the order
of a thousand readable “points” (sensors), and a few hun-
dred writable “points” (actuators). In addition to PID control
loops, the DCS can be programmed with numerous “alarms”
that alert the human operator when certain constraints are
violated (e.g., min/max values, rate limits). “Advanced con-
trol” is the industry term given to more powerful mathemati-
cal control techniques (e.g., multivariate linear models) used
to optimize control parameters during normal operations.

Current Refinery Operations
Human operators supervise the operation of the highly-
automated plant. This supervisory activity includes mon-
itoring plant status, adjusting control parameters, execut-
ing pre-planned operational activities (e.g., shutting down



Refinery
Process

Control
Advanced

Distributed
Control
System

On/Off

Plant

Plant
State

State

‘Optimal’

Actions

Operators
Alarms,
Plant State

Control
Moves

Control
Moves

Figure 2: State-of-the-Art Refinery Control.

a compressor for maintenance), and detecting, diagnosing,
compensating for, and correcting abnormal situations. The
operator has a view of the values of all control points, plus
any alarms that have been generated. The actions the opera-
tor is allowed to take include changing SPs, manually assert-
ing output values for control points, and toggling advanced
control modules.

Abnormal Situations
Abnormal situations occur frequently in refineries, and vio-
late many of the assumptions upon which the DCS control
systems are designed. Minor incidents often cause dozens
of alarms to trigger, requiring the operator to perform any-
where from a single action to dozens, or even hundreds, of
compensatory actions over several hours. Major incidents
can precipitate an alarm flood, in which hundreds of alarms
trigger in a few seconds, leading to scrolling lists of alarm
messages, panels full of red lights, and insistent klaxons.
In these situations, the operator is faced with severe infor-
mation overload, which often leads to incorrect diagnoses,
inappropriate actions, and major disruptions to plant opera-
tions. Abnormal situations can be extremely costly, resulting
in poor product quality, schedule delays, equipment damage,
reduced occupational safety, and environmental hazards.

Current Practice: What doesn’t work
Operators undergo extensive training to apply Standard
Operation Procedures (SOPs) in a wide variety of situa-
tions. Many of these procedures are periodically performed
during normal, steady-state operation (e.g., unit shutdown
to replace catalyst every three months), while other proce-
dures are specifically designed as a response to an abnormal
situation (e.g., loss of combustion air to the FCCU).

Because abnormal situations are so serious, many regula-
tory and administrative structures are already in place to help
manage them. Primarily, operators are trained to respond to
abnormal situations based on extensive written SOPs. The
procedures can be quite long (dozens of pages), with a high
degree of logical control structure and contingency to offset

the fact that the exact state of the plant is almost never known
with certainty. Many procedures involve sampling data, con-
firming other readings, performing diagnostic tests, confer-
ring with other plant personnel, and adjusting DCS control
parameters. Some procedures apply to extremely general
contexts (e.g., we’re losing air pressure from somewhere),
while some are less general (air compressor AC-3 has shut
down), and some are very specific (the lube oil pump for
AC-3 has a broken driveshaft).

Refineries are required to develop, distribute, train for,
and submit written SOPs for every common or dangerous
potential situation. In several such plants, however, we ob-
served that many three-ring binders of SOPs were stored
away and had not been touched or updated for years. Of
course, other, more regularly-performed procedures were
more accessible.

The biggest problem, however, was the fact that these
written procedures were interpreted quite differently from
plant to plant, and from operator to operator, which was
hardly OSHA’s (the Occupational Safety and Health Ad-
ministration’s) original intent. For example, some train-
ers regarded such OSHA-mandated procedures to be “rough
guidelines,” while others insisted that their procedures were
intended to be followed to the letter and were under con-
stant review for possible improvement. Likewise, we found
12-hour procedures consisting of a few general steps (e.g.,
incrementally reduce the temperature in a vessel over the
course of 4 hours), which, when explained to us, was a
highly-complex procedure of its own (e.g., requiring con-
stant monitoring of dozens of variables, and execution of
dozens of well-timed, situation-specific setpoint updates).
When asked why some procedures were very detailed while
others contained no detail at all, we were told that there
was wide disagreement between operators on the “best ex-
act way” to perform certain steps, and that each operator
learns, through experience, which way works best for him.
Such an attitude did not, of course, result in repeatable or
predictable execution of these procedures, and often, even
as we watched, resulted in costly or dangerous miscommu-
nication between operations personnel.

Theory 1: Procedural Reasoning
We implemented the core reasoning engine of AEGIS in
C-PRS, the C-based version of the Procedural Reasoning
System (Ingrand 1994; Ingrand, Georgeff, & Rao 1992;
Georgeff & Lansky 1986). As shown in Figure 3, knowl-
edge in PRS is represented as a declarative set of facts about
the world, together with a library of user-defined knowledge
areas (KAs) that represent procedural knowledge about how
to accomplish goals in various situations. Goals represent
persistent desires that trigger KAs until they are satisfied
or removed. The intention structure represents currently-
selected KAs that are in the process of executing or awaiting
execution, in pursuit of current goals. The PRS interpreter
chooses KAs appropriate for current goals, selects one or
more to put onto the intention structure, and executes one
step from the current intention.

We chose an integrated approach to Goal setting, Plan-
ning, and Execution (GPE) based on the AI community’s



Domain

Database
(Facts, Beliefs)

Interpreter
(Reasoner)

KA Library
(Plans)

Monitor
Command

Intention

Application

Generator

Structure
Goals

Figure 3: The Procedural Reasoning System.

past experiences with autonomous systems applied to real-
world domains (e.g., robotics); experience that has shown
that choosing a goal to pursue, planning a course of action,
and executing the steps of the plan are inevitably intertwined
by the unpredictable and dynamic nature of real-world do-
mains. Execution failures, changing goals, difficult planning
problems, and environmental changes all disrupt the ideal of
simple forward information flow. If the GPE functions were
separated into distinct programs, the amount of information
constantly passing back and forth due to the changing do-
main, plans, and goals would be overwhelming. In our in-
tegrated GPE approach, in contrast, those changes are kept
largely local to GPE, so the C-PRS interpreter can be effi-
cient about managing that information.

Other features of PRS which have proven to be extremely
useful for this domain include the following:

• The hierarchical, subgoaling nature of the procedural
representation that allows PRS to combine pieces of plans
in novel ways, which is important for flexible plan execu-
tion and goal refinement.

• Its ability to pursue multiple, goal-directed tasks while at
the same time being responsive to changing patterns of
events in bounded time.

• The ability to construct and act on partial (rather than
complete) plans.

• Meta-level (or reflective) reasoning capabilities, an im-
portant feature for controlling the allocation of process-
ing resources, planning attention, and alternative goal
achievement strategies.

• Knowledge representation assumptions, which encourage
incremental refinement of the plan (procedure) library,
an enormous advantage for large-scale applications. For
example, a knowledge engineer could simply add a single,
temporary KA to the plan library to reflect that an alter-
native spill route will be used until a normally-available
tank is freed up, rather than redefine the plant equipment
model to allow for this temporary situation.

PRS: What doesn’t work
There were several major obstacles to making this first ap-
proach sufficient in a real refinery setting:

• Plan Artifacts: While dynamically generating a plan
customized to the specific situation at hand seemed appro-
priate and desirable from an AI standpoint, it was clearly
inconsistent with current practices at refineries. What
plan would we show to OSHA? Which of the combina-
torial number of potential plans should be printed out? In
short, OSHA could not approve plans that didn’t already
exist, and trainers could not print out these plans to use
for training sessions in the conventional way. The lack of
a pre-existing plan artifact seemed to simultaneously be
both the power of our approach, and the death-blow to the
existing refinery culture!

• Operator Check-Offs: Keeping everyone on the team
(including the system) in sync required operators to
“check off” tasks when they knew they were actually
completed. In general, operators strongly resisted this
added responsibility and could not be counted on to do
it. Also, in many refinery situations, it is impossible to
automatically infer from sensor readings when an action
had been taken, either because of an under-sensored plant
(sensors were often eliminated because sensor replace-
ment was the lion’s share of plant maintenance costs), or
because the needed data would not become available early
enough to be useful (e.g., the valve has been manually
closed, but the temperature difference won’t be noticeable
for 20 minutes, which is too long to delay the next step in
the plan).

• Procedure Maintenance: PRS procedures were imple-
mented for field tests by AI specialists. Plant personnel
were therefore understandably concerned about imple-
menting, updating, and maintaining the large set of plant
procedures that were initially and painstakingly trans-
formed from text files printed on paper into an executable
PRS plan library.

Projection vs. Reaction
Classical AI planners project forward the actions they are
considering, deriving the expected results of the actions and
using that projected information to make planning decisions
(Fikes & Nilsson 1971; Wilkins 1988). Projection allows
a planner to think about the future and build plans in in-
tuitively powerful ways; however, performing this type of
projection requires a model of the environment that supports
simulation. You must be able to ”run time forward” on the
model to find out what the state resulting from a particular
action will look like. In many real world domains, including
oil refineries during abnormal situations, these sorts of mod-
els are simply not commercially available, and those that are
lack the fidelity required to support projection. Even worse,
during an abnormal situation, such models will no longer be
accurate, almost by definition: if something is broken, then
some component is not functioning according to predictions,
or else the system would be in normal operations. In fact, it
is this very observation–that plant models are not generally



available (and seem impractical with current modeling and
diagnosis technology)–that led us to pursue a more reactive
approach using PRS in the first place.

The reactive nature of PRS has pros and cons relative to
projection. On the positive side, the procedures are easier
to understand and control because they can look a lot like
an SOP. PRS is essentially doing the job of dynamically in-
voking the procedures and managing their complexity. On
the negative side, this means that PRS can only generate
new combinations of those procedures: it cannot synthe-
size new procedures from lower-level primitive descriptions
like a synthetic projective planner might. On the positive
side, PRS does not require a complex, accurate model of the
plant to achieve intelligent behavior. On the negative side,
it means PRS can’t tell you a lot about what it expects to
do beyond the scope of a single procedure (whose size and
granularity is really up to the knowledge engineer).

Because PRS is reactive, it does not look ahead to deter-
mine which procedure it will select to achieve a given goal
until that goal has been reached in the procedure. We believe
this is “correct” from an engineering perspective, because
the precise method of achieving a goal should not be deter-
mined until the full environmental context is available for
evaluating the alternatives. This context can only be known
when the goal is posted, not before; however, this is insuf-
ficient from the operator’s perspective, because it provides
little insight into what the system is planning globally.

In summary, there are two distinct aspects to this problem
within the context of executing a single PRS procedure:

1. Future goal-achieving procedures are not yet selected.
PRS procedures are, in the simplest serial case, exe-
cuted like a normal computer program1. When PRS se-
lects a procedure, it instantiates it, and sets the “program
counter” at the first goal. Applicable procedures are de-
termined to achieve that goal, and one is chosen. While
this newly-chosen procedure is being executed, however,
selection of procedures for goals beyond the program
counter is deferred. Some future goals and actions are
known but not available to the interpreter. Although the
names of goals and primitive actions beyond the program
counter are available in the procedure source code by in-
spection, they are not available to the C-PRS interpreter
until the program counter arrives.

2. Future goals and actions are not necessarily meaning-
ful to the user anyway. Even if future goals and ac-
tions could be accessed by the interpreter, some are at the
wrong level to be relevant to the user (e.g., binding a local
variable), while others are not in a form useful to an oper-
ator (code), or easily translatable into such a form. In gen-
eral, it is not reasonable to expect the PRS procedure au-
thor to use (implementation-based) names and constructs
that correspond to an operator’s (domain-based) under-
standing, and vice versa.

1C-PRS also supports parallel goal achievement, but that capa-
bility does not affect this discussion.

Theory 2: Pseudo-Projection
To work around this problem, we have developed a pseduo-
projection method that allows GPE to appear partially pro-
jective without making any changes to the reactive PRS in-
terpreter. Pseudo-projection allows the operator to see as far
into the future, and with as much detail as is possible, given
the reactive procedural paradigm.

We implement pseudo-projection using a procedure anno-
tation syntax that allows the author to annotate each proce-
dure with a series of comments that the AEGIS user will
see at runtime when the procedure is chosen by PRS. We
refer to these annotations, which reside entirely within PRS
comments, as metacomments. In this way, we can load the
annotated procedures into PRS directly and all of their be-
haviors will operate normally except for the user interface
functions. These interface functions are generated automat-
ically from the metacomments.

The Magical MetaComment Parser (MMCP) reads the
metacomments and converts them into active PRS state-
ments that display information to the user and allow the
user to interact with the procedure (e.g., granting permis-
sions or assuming responsibility). First, the modified pro-
cedure sends a summary of its own structure to the user in-
terface, allowing the UI to produce a skeletal display of the
procedure. Then the modified procedure allows the user to
assume responsibility for the procedure’s goal, if the proce-
dure has not already begun. The MMCP looks at both the
raw procedure code and the metacomments, extracting con-
trol structure from the procedure code and appropriate labels
for blocks of code from the metacomments.

The MMCP and appropriate metacommenting allows
PRS to appear partially projective to the user. As soon as
a procedure is selected, the user can see the entire struc-
ture of the procedure, as well as the status of the different
code blocks (goals, atomic actions, conditionals, etc.). The
MMCP also automatically wraps the procedures in code that
interacts with the user interface to allow the user to reas-
sign responsibility for achieving the goal himself. To main-
tain the appropriate succeed/fail semantics, the user inter-
face then allows the user to specify when he has completed
a task he earlier assumed, to allow the higher-level proce-
dure that invoked the goals to continue. For example, a pro-
cedure may post a goal to close a valve and the user may
decide to perform that action himself. When the user com-
pletes the action, he indicates whether he has succeeded or
failed. In the event of success, PRS can assume the proce-
dure has completed (although it will not assume the goal has
been achieved until that has been independently confirmed).
If instead the user has failed, and PRS has other methods
available to achieve the goal, it will try them, as usual.

Pseudo-Projection: What doesn’t work

The MMCP is a temporary approach to the problem of user
awareness in a reactive system, and suffers from several se-
rious deficiencies. First, it adds complexity to the process of
writing procedures, although the metacomment syntax itself
is quite simple. In part, this added complexity is unavoidable
if we wish the user to see a representation of the procedure



that is somehow simplified, abstracted, or in different terms
than the raw procedure code itself. However, the MMCP ap-
proach is less than ideal even assuming that some annotation
must be done, because its operation is entirely external to the
PRS interpreter. This means that the MMCP must do a lot of
work (e.g., assigning unique identifiers to procedure steps)
in procedure code that runs relatively inefficiently. If the
MMCP functionality was pushed into the PRS interpreter,
these common operations could be automatically performed
whenever a procedure is loaded (at compile time), without
the overhead associated with each procedure goal statement.

Theory 3: Mini-Models
While pseudo-projection techniques provide a form of
lookahead for the user, other limited forms of model-based
projection can be exploited which allow more intelligent
control by the reactive system itself. Consider the follow-
ing simplified procedure segment for responding to a loss of
combustion air:

Procedure Novice-Air-Loss-Response

1. Cut riser temperature to 930 degrees F.

2. Eliminate all residual feed.

3. Eliminate all slurry pumparound feed.

4. Cut main feed to 20,000 barrels/day.

5. Add pure oxygen up to 30% enrichment.

This procedure fragment is a typical example from an
SOP manual. Such procedures are characterized by simple
instructions, designed to be understandable by even the most
novice operator. They are straightforward, safe, static, and
suboptimal. For instance, all residual and slurry feeds are
eliminated to allow the operator to concentrate on cutting
and monitoring only the main feed.

While these procedures provide a starting point for encod-
ing executable procedures, they do not accurately reflect the
complexity of most operators’ response to an abnormal situ-
ation. As operators gain experience, their knowledge of the
underlying plant process and DCS response grows, and their
response becomes more model-based. In our example sce-
nario, experienced operators would generally leave in some
residual feed to keep the coke component higher, keeping
the riser temperature higher. This is an optimization step
that, while still safe, maintains a higher level of production,
and thus reduces the cost of the disruption.

In general, the more experienced the operator, the more
context-sensitive is his response to an abnormal situation.
We view our GPE procedures as evolving in the same way,
incorporating more of what we have called mini-models di-
rectly within PRS procedures. As the authors of the proce-
dures gain a better understanding of the process and control
system, we expect the procedures to rely less on static re-
sponses, and more on computing over a simplified model
to generate a context-sensitive response. The following is a
more model-based version of the same procedure, emulating
the expert-operator approach:

Procedure Expert-Air-Loss-Response

1. Compute amount of O2 in lost air.

2. Add pure O2 to replace lost O2, up to 30% enrichment
max.

3. Compute O2 left to replace.

4. Compute amount of carbon this corresponds to.

5. For each feed source, cut source according to carbon fac-
tor.

6. Set riser temperature setpoint based on remaining carbon.

This procedure concentrates on balancing carbon content
of the current feed sources with the amount of oxygen avail-
able, while staying within safety limits of 30% enrichment.
It is based on a simplified mini-model involving a handful
of important factors in the process, and is thus much more
tailored to the actual circumstances at the process at the time
of its invocation. In this example, GPE can greatly assist the
operator by easily and automatically computing parameters
to the situation response (e.g., correct riser temperature), and
provide the option for GPE to take the actions autonomously
and monitor the effects of these actions over time.

Theory 4: Existing Predictive Models
In addition to mini-models directly implemented with PRS
procedures, small predictive models exist as black-box ap-
plications for very limited pieces of the refinery. While
these models are quite small (e.g., ten inputs, four outputs),
in certain contexts they can be invoked from within a PRS
procedure to provide several valuable types of information.
In many circumstances, GPE has a choice of action. By
projecting these models forward for each option, GPE can
assess the effectiveness of each alternative and choose the
best one. Also, the specific results of the projections can of-
ten be valuable information to the operator and to GPE. In
close cases, the operator might prefer one method over an-
other for less tangible reasons than GPE is able to consider.
From GPE’s perspective, the results form a rank ordering of
the options, which can be cached and used if the first goal-
achievement method fails. Finally, the specific expected re-
sults can inform GPE in establishing its own monitoring pa-
rameters.

Next Steps: Main Line Projection
While pseudo-projection provides a higher degree of look-
ahead than native PRS by presenting a skeletal plan to the
user, it still does not provide a completely instantiated plan
artifact. As stated earlier, we believe this to be a good
trade-off from an engineering standpoint, sacrificing com-
plete lookahead for the flexibility of an appropriate, context-
specific response. However, refinery personnel and govern-
ment agencies like OSHA are still accustomed to working
with procedures documented from beginning to end. We
conclude by sketching one possible approach to overcome
this conflict between engineering progress and industrial
convention, which we will call main line projection:



1. Project an entire plan forward based on accepted plant
policy and assumptions of how the underlying process
will respond. Ignore all but the most likely plant response
to every action, but carefully note the assumptions upon
which later actions depend.

2. Explicitly track the assumptions made so that when one
is violated, elements of the plan based on that assumption
can be evaluated for possible replanning.

3. Modify only the affected procedure steps in place (i.e.,
without a complete replan) if possible from the current
state forward to reflect the changing state of the process.
This is possible because PRS understands the relationship
between its high-level goals and lower-level actions meant
to achieve those goals.

4. Maintain explicit information about which steps or ac-
tors require resources (e.g., storage tanks, feed, person-
nel, tools, time) and allocate them to enable higher prior-
ity goals to be satisfied first (current GPE uses a simple
”first generated, first-served” scheme now).

5. Re-evaluate the allocation of resources when the plan
changes to accommodate contingencies. This alloca-
tion can be done much more intelligently with pseudo-
projection than with native PRS, since the system will al-
ways have access to the entire current plan.

6. Develop a user interface to clarify what is happening at
any point in an evolving plan.

Conclusion: Multiple Theories
We argue that providing decision support in a domain as
complex as refinery control requires combining multiple the-
ories of planning and acting (e.g., reactivity and projection),
supplemented by domain-specific techniques developed for
well-understood sub-problems (e.g., mini-models and exist-
ing predictive control techniques). The primary challenge
we raise is how best to combine these heterogeneous tech-
niques into a cohesive, comprehensible system capable of
performing well and predictably under adverse, high-risk
conditions, and propose a set of next steps to resolve con-
flicts that still exist in the application of AI techniques to
real-world, industrial, decision support problems.

References
Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence 2:3:189–208.

Georgeff, M., and Lansky, A. 1986. Procedural knowl-
edge. IEEE Special Issue on Knowledge Representation
74:1383–1398.

Ingrand, F.; Georgeff, M.; and Rao, A. 1992. An archi-
tecture for real-time reasoning and system control. IEEE
Expert 7:6:34–44.

Ingrand, F. F. 1994. C-PRS Development Environment
(Version 1.4.0). Labege Cedex, France: ACS Technologies.

Krebsbach, K. D., and Musliner, D. J. 1997. A refinery
immobot for abnormal situation management. In AAAI ’97

Workshop on Robots, Softbots, and Immobots: Theories of
Action, Planning, and Control, Providence.
Leffler, W. L. 1985. Petroleum Refining for the Non-
Technical Person. Tulsa, OK: PennWell Publishing.
Musliner, D. J., and Krebsbach, K. D. 1998. Apply-
ing a procedural and reactive approach to abnormal situ-
ations in refinery control. In Proc. Conf on Foundations of
Computer-Aided Process Operations (FOCAPO).
Wilkins, D. 1988. Practical Planning: Extending the
Classical AI Planning Paradigm. San Mateo, CA: Morgan
Kaufmann.


