
Other Agents’ Actions as Asynchronous Events

Kurt D. Krebsbach
Department of Computer Science

Lawrence University
Appleton, WI 54912-0599

kurt.krebsbach@lawrence.edu

Abstract

An individual planning agent does not generally have
sufficient computational resources at its disposal to pro-
duce an optimal plan in a complex domain, as delibera-
tion itself requires and consumes scarce resources. This
problem is further exacerbated in a distributed plan-
ning context in which multiple, heterogeneous agents
must expend a portion of their resource allotment on
communication, negotiation, and shared planning ac-
tivities with other cooperative agents. Because other
agents can have different temporal grain sizes, plan-
ning horizons, deadlines, and access to distinct local
information, the delays associated with local delibera-
tion and, in turn, shared negotiation are asynchronous,
unpredictable, and widely variable.

We address this problem using a principled, decision-
theoretic approach based on recent advances in Gen-
eralized Semi-Markov Decision Processes (GSMDPs).
In particular, we use GSMDPs to model agents who
develop a continuous-time deliberation policy offline
which can then be consulted to dynamically select both
deliberation-level and domain-level actions at plan ex-
ecution time. This scheme allows individual agents to
model other cooperative agents’ actions essentially as
asynchronous events, e.g., that might or might not ful-
fill a request (uncertain effect) after a stochastically-
determined delay (uncertain event duration). With this
approach, the decision-theoretic planner for the individ-
ual agent can make near-optimal execution-time deci-
sions that trade off the risks and opportunities associ-
ated with their own actions, other agents’ actions, and
asynchronous external threats.

Introduction

Agents planning in interesting, overconstrained do-
mains must operate under the assumption of bounded
rationality, i.e., in a manner that is as near to optimal
as possible with respect to its goals and available re-
sources. To address this observation, researchers have
applied planning techniques to the planning process it-
self. Here, planning is conducted at a higher level of

Copyright c© 2006, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

abstraction than the base domain called the meta do-
main, with the higher-level planning sometimes referred
to as metaplanning, or metacognition.

In general, deliberation scheduling involves decid-
ing what aspects of an artifact (e.g., the agent’s plan)
should be improved, what methods of improvement
should be chosen, and how much time should be de-
voted to each of these activities. In particular, we define
deliberation scheduling to be a form of metacognition in
which two planners exist: one, a base-level planner that
attempts to solve planning problems in the base do-
main, and two, a meta-level planner deciding how best
to instruct the base-level planner to expend units of
planning effort. Both the meta and base domains are
stochastic. Actions in the meta domain consist of a set
of base domain problem configurations from which to
choose, each of which constitutes a planning problem
of varying difficulty (the successful result of which is
a plan of corresponding quality), which might or might
not be solvable, and which takes an unknown (but prob-
abilistic) amount of time to complete. Similarly, the
base domain’s events and actions can succeed or fail,
and have continuously-distributed durations.

The goal of the meta-level planner is to schedule the
deliberation effort available to the base-level planner to
maximize the expected utility of the base domain plans.
This complex problem is further complicated by the fact
that base planning and execution happen concurrently,
further constraining the resources being allocated by
the meta-level planner.

Deliberation Scheduling

In this paper we build on previous work on de-
liberation scheduling for self-adaptive circa (sa-

circa) (Goldman, Musliner, & Krebsbach 2001;
Musliner, Goldman, & Krebsbach 2003). In this ear-
lier work, we developed a meta-level planner (called
the Adaptive Mission Planner) as a specific compo-
nent of sa-circa to address domains in which the au-
tonomous control system onboard an unmanned aerial
vehicle (UAV) is self-adaptive: that is, it can modify its
later plans to improve its performance while executing
earlier ones. In this context, adaptation may be nec-
essary for a variety of reasons – because the mission

is changed in-flight, because some aircraft equipment
fails or is damaged, because the weather does not co-
operate, or perhaps because its original mission plans
were formed quickly and were never optimized.

While our previous work on deliberation scheduling
problems has involved discretizing time to make MDPs
tractable (Goldman, et.al.), recent advances in Gen-
eralized Semi-Markov Decision Processes (GSMDPs)
suggest a way to model time and the related prob-
ability distributions continuously to support both
goal-directed (Younes, Musliner, & Simmons 2003)
and decision-theoretic planning (Younes & Simmons
2004). Of particular relevance here, Younes introduces
GSMDPs as a model for asynchronous stochastic de-
cision processes, and implements a decision theoretic
planner, called tempastic-dtp. In this paper, we use
tempastic-dtp to construct decision-theoretic delib-
eration policies in a domain similar to the UAV domain
reported on earlier, and will show it is a more flexible
and effective approach for several reasons, including:
• It provides a model of truly asynchronous events.

This property in particular will allow us to extend the
approach to distributed planning domains in which
negotiation between agents is fundamentally asyn-
chronous.

• It accurately models the essentially continuous na-
ture of time and avoids biases due to the arbitrary
granule size chosen to discretize time.

• It models the duration of a actions (controllable) and
events (uncontrollable) as continuous random vari-
ables, rather than as discretized approximations or
constants.

• The semi-Markov process relaxes the Markov as-
sumption, which does not hold in general for prob-
lems involving continuous quantities such as time,
and continuous probability distributions governing
action and event durations.
Because deliberation scheduling involves several dif-

ferent planners at different levels of abstraction, we
make a distinction between the base domain–where the
base-level planner plans actions for UAVs flying a multi-
phase mission, and the meta domain–in which the meta-
planner schedules units of deliberation effort for the
base-level planner. Meta-level policies are constructed
by tempastic-dtp in advance of the mission. Base-
level (base) planning can occur both offline, before the
agent begins executing in the environment, and online,
during execution of earlier base phase plans. We focus
on online base planning–as controlled by the policy con-
structed during offline metaplanning–which attempts to
adapt to changing circumstances and to continually im-
prove the quality of base plans to be executed in future
mission phases.

Background

Stochastic models with asynchronous events can be
rather complex, in particular if the Markov assumption
does not hold, such as if event delays are not exponen-

tially distributed for continuous-time models. Still, the
Markov assumption is commonly made, and the atten-
tion in the AI planning literature, in particular, is given
almost exclusively to discrete-time models, which are
inappropriate for asynchronous systems. We believe,
however, that the complexity of asynchronous systems
is manageable.

Stochastic Discrete Event Systems

We are interested in domains that can be modeled as
stochastic discrete event systems. This class includes
any stochastic process that can be thought of as occu-
pying a single state for a duration of time before an
event causes an instantaneous state transition to occur.
In this paper, for example, an event may constitute the
UAV reaching a waypoint, causing a transition into a
state in the next phase of the misson. We call this a dis-
crete event system because the state change is discrete
and is caused by the triggering of an event.

Although state change is discrete, time is mod-
eled most appropriately as a continuous quantity. A
continuous-time, discrete-state system with countable
state space S is a mapping {X : [0,∞) → S} such that:
1. Transitions occur at strictly increasing time points:

0 = τ0 < τ1 < τ2 < . . ., where τn denotes the time of
the nth transition.

2. Transitions can continue to infinite horizon:
limn→∞ τn = ∞; however, if all goals are achieved or
no further actions or events are possible, the system
will halt.

3. The index ı(t), denotes the last transition on or before
time t: For t > 0, ı(t) = max{k ∈ N|τk ≤ t}

4. The DES has piecewise constant trajectories: X(t) =
X(τı(t)). This ensures that the DES maintains a con-
stant state sn = X(τn) between the times of the nth
and (n + 1)th transitions.

Decision Processes

We now describe several important processes that can
be used to model various classes of DESs. For each
of these processes, we can add a decision dimension
by distinguishing a subset of the events as controllable
(called actions), and add rewards for decisions that lead
to preferred outcomes. The resulting process is known
as a decision process.

Markov Processes: A stochastic discrete event sys-
tem is a Markov process if the future behavior at
any point in time depends only on the state at that
point in time, and not in any way on how that state
was reached. Such a process is called time inhomoge-
neous if the probability distribution over future trajec-
tories depends on the time of observation in addition
to the current state. Because the path to the state
cannot matter, the continuous probability distribution
function that describes the holding time in the state
must depend only on the current state, implying that
for continuous-time Markov processes, this holding time
is exponentially distributed (i.e., memoryless).

Semi-Markov Processes: In realistic domains,
many phenomena are not accurately captured by mem-
oryless distributions. The amount of time before a UAV
reaches a waypoint and proceeds to the next mission
phase, for example, clearly depends on how long the
UAV has been flying toward that waypoint. A semi-
Markov process is one in which, in addition to state sn,
the amount of time spent in sn (i.e., holding time) is also
relevant in determining state sn+1 Note, however, that
the time spent in the current state (needed by an SMP)
is not the same as the time of observation (needed for a
time inhomogeneous MDP). Also note that the path of
previous states taken to reach the current state is still
inconsequential in determining the next state.

Generalized Semi-Markov Processes: Both
Markov and semi-Markov processes can be used to
model a wide variety of stochastic discrete event
systems, but ignore the event structure by representing
only the combined effects of all events enabled in the
current state. The generalized semi-Markov process
(GSMP), first introduced by Matthes (1962), is an
established formalism in queuing theory for modeling
stochastic discrete event systems that emphasizes the
system’s event structure (Glynn 1989).

A GSMP consists of a set of states S and a set of
events E. At any time, the process occupies some state
s ∈ S in which a subset Es of the events are enabled.
Associated with each event e ∈ E is a positive trigger
time distribution F (t, e), and a next-state distribution
pe(s, t). The probability density function for F, h(s),
can depend on the entire execution history, which dis-
tinguishes GSMPs from SMPs. This property allows a
GSMDP, unlike an SMDP, to remember if an event en-
abled in the current state has been continuously enabled
in previous states without triggering–a critical property
for modeling asynchronous processes.

Specifying DESs with GSMDPs: To define a
DES, for all n ≥ 0, we define τn+1 and sn+1 as func-
tions of {τk, k ≤ n} and {sk, k ≤ n}. The GSMP model
(Glynn 1989) provides a way to stochastically specify
these inductive functions, and thus provides a represen-
tation of stochastic DESs. This representation assumes
a countable set E of events. For each state s ∈ S there
is an associated set of events E(s) ⊆ E; these are the
events that will be enabled (or active) whenever the sys-
tem enters state s. At any given time, the active events
are categorized as new or old. Initially at time 0, all
events associated with s0 are new events. Whenever
the system makes a transition from sn to sn+1, events
that are associated with both sn and sn+1 are called old
events, while those that are associated only with sn+1

are called new events.
Whenever the system enters state sn, each new ac-

tive event e receives a timer value that is generated
according to a time distribution function F (t, e). The
timers for the active events run down toward zero un-
til one or more timers reach zero. This is the time
τn+1. Events that have zero clock readings are called

triggering events (whose set is denoted by En). The
next state sn+1 is determined by a probability distribu-
tion pe(s, t). Any non-triggering event associated with
sn+1 will become an old event with its timer contin-
uing to run down. Any non-triggering event not as-
sociated with sn+1 will have its timer discarded and
become inactive. Finally, any triggering event e that
is associated with sn+1 will receive a fresh timer value
from F (t, e). The definition of the GSMP is complete
with the specification of a probability distribution over
the initial state s0. Note that the probability of two
or more events simultaneously triggering is zero if all
timer distributions are continuous; however, there are
discrete event systems in which some timer distribu-
tions have discrete components, and thus simultaneity
may be unavoidable (Alur, Courcoubetis, & Dill 1993;
Shedler 1993).

The Necessity for GSMPs

The fact that the timers of old events continue to run
down (instead of being reset) means that the GSMP
model is non-Markovian with respect to the state space
S. On the other hand, it is well-known that a GSMP
as described above can be formally defined in terms of
an underlying Markov chain {(sn, cn)|n ≥ 0}, where
sn is the state and cn is the vector of clock readings
just after the nth state transition(Glynn 1989). In
the special case where the timer distributions F (t, e)
are exponential with intensity λ(e) for each event e,
the process becomes a continuous-time Markov pro-
cess. While each of the aspects of stochastic deci-
sion processes listed above have been individually ad-
dressed in research on decision theoretic planning, no
existing approach deals with all aspects simultaneously.
Continuous-time MDPs (Howard 1960) can be used
to model asynchronous systems, but are restricted to
events and actions with exponential trigger time distri-
butions. Continuous-time SMDPs (Howard 1971) lift
the restriction on trigger time distributions, but can-
not model asynchrony. A GSMDP, unlike an SMDP,
remembers if an event enabled in the current state has
been continuously enabled in previous states without
triggering. This is key in modeling asynchronous
processes, which typically involve events that
race to trigger first in a state, but the event
that triggers first does not necessarily disable
the competing events (Younes 2005). In the UAV
domain, the fact that a threat presents itself in a par-
ticular phase in no way implies that other applicable
threats in that phase do not continue to count down to
their trigger times as well. For this reason, an “im-
proved” plan that handles a certain combination of
threats simultaneously is better than one that only han-
dles single concurrent threats. Of course, the meta-level
planner must decide whether the extra base-level plan-
ning work is justified given the time constraints and
other improvement actions available to it.

A GSMDP Model

We have posed our deliberation scheduling problem as
one of choosing, at any given time, what phase of the
mission plan should be the focus of computation, and
what plan improvement method should be used. This
decision is made based on several factors, including:
• Which phase the agent is currently in;

• How long the agent is expected (probabilistically) to
remain in that phase;

• The list of threats (and their combinations) that are
possible in each phase along with a distribution gov-
erning how soon each threat might trigger;

• The probabilistic measure of the quality of the cur-
rent plan for each remaining phase;

• The expected duration of each applicable improve-
ment operator;

• The probability of success of each applicable improve-
ment operator;

• The marginal improvement of each applicable im-
provement operator over the current plan for that
phase.
We assume a fixed distribution of potential rewards

among mission phases. For example, it might be worth
2 units of reward to survive to the point in the mis-
sion in which an important reconnaissance photo can
be taken by the UAV agent. In general, each phase will
not have explicit reward associated with it, but survival
in each that phase still implies reward because the agent
must survive to accumulate any further reward in fu-
ture phases. The quality of an individual phase plan is
thus based on the probability of surviving it by execut-
ing a plan that effectively handles the threats (harmful
events) that actually occur. The quality of the overall
plan is measured by how much reward it is expected to
achieve. The system improves its expected reward by
reducing its likelihood of failure, which, in turn, elimi-
nates the possibility of future reward attainment.

The overall mission is decomposed into a sequence of
phases:

B = b1, b2, ..., bn . (1)

The base-level planner, under the direction of the meta-
level planner, has determined an initial plan, P 0 made
up of individual state space plans, p0

i , for each phase
bi ∈ B:

P 0 = p0
1, p

0
2, ..., p

0
n . (2)

P 0 is an element of the set of possible plans, P . We
refer to a P i ∈ P as the overall mission plan. The
state of the system, then, may be represented as an
ordered triple of time index, the phase in which the
agent is currently operating, and the current mission
plan. With some abuse of notation, we refer to the
components of a state using operators t(S), b(S) and
P (S) for S ∈ S.

We model the duration of mission phases as contin-
uous random variables. In essence, an event occurs ac-
cording to a continuous probability distribution that
indicates that the agent has crossed a phase boundary.

The meta-level planner has access to several plan
improvement methods,

M = m1, m2, ..., mm . (3)

At any point in time, t, the meta-level planner can
choose to apply a method, mj, to a phase, bi (writ-
ten as mj(i)). Application of this method may yield a
new plan for mission phase bi, producing a new P t+1

as follows: if

P t = pt
1, p

t
2, . . . p

t
i, . . . , p

t
n , (4)

then
P t+1 = pt

1, p
t
2, . . . p

t+1
i , . . . , pt

n , (5)

where
pt

i 6= pt+1
i . (6)

Note that the application of this method may fail, yield-
ing P t+1 = P t. Application of a method never yields
a new plan of lower measured quality than the original
plan, since if we generate a worse phase plan, we sim-
ply discard it and keep the previous one. Finally, the
amount of time it takes for the base planner to return
is similarly modeled as a continuous random variable;
thus, all plan improvement may actions have uncertain
effects and uncertain duration, but obey the constraints
imposed by a continuous probability distribution.

To complete the formulation, we must have a utility
(reward) function, U applying to the states. Again, to
simplify, we assess the agent a reward, U(i) on the com-
pletion of mission phase i. For example, if the aircraft
achieves it mid-mission objective of taking a reconnais-
sance photo it receives some reward, and receives the
balance of the possible reward by returning home safely.
In this domain, there is no notion of receiving reward
by staying alive; the mission only exists to achieve a
primary objective and, if possible, to recover the UAV
(a secondary objective).

Different phases of the mission present different de-
grees of danger. We represent this by varying the aver-
age delay before certain threats are likely to occur (as
threats are simply represented as delayed events). The
probability of surviving a given phase is a function of
both the hazards posed by that phase, and the quality
of the state space plan that is actually in place when
that phase is executed. This is shown in the description
of the delayed event die-phase-1-med in Figure 1. Be-
cause a medium-competency plan is in place, the expo-
nential delay mean has been increased to 300 time units
instead of 100 time units for the initial, low-competency
plan (not shown). By dynamically completing plan im-
provement actions, average delays on threatening ac-
tions increase the probability of surviving the phase be-
fore threats occur. The problem of achieving reward is
transformed into one of surviving to complete phases
that provide reward. The problem of choosing a delib-
eration action for each state consists of choosing which
phase of the mission plan to try to improve, and how
difficult an improvement operator to attempt.

Domain Description

Figure 1 contains an example of each of the major do-
main components written in PPDDL+ (Younes 2003;
Younes & Littman 2004). States are represented as a
combination of binary predicates. Because PPDDL+

restricts discrete state features to binary predicates,
non-binary but discrete state features (such as the
phase number) must be encoded with a set of binary
variables (e.g., phv1=1 and phv2=1 encodes phase=3).1

Survival probabilities are encoded as a two-bit value as
well. For example, (sp11) and (sp12) cover the plan
quality possibilities of low, medium, high, and highest
for mission phase 1.

Planning Problem

As seen in the particular problem description, the base-
level agent starts out alive in phase 0 with various sur-
vival probabilities pre-established by existing plans for
each mission phase. In this example, we assume the
agent will begin execution of the plan for phase 0 im-
mediately, and thus has the option of selecting any im-
provement actions applicable to phases 1 through 3.
The agent is allowed to attempt to improve the plan
for the mission that it is currently executing. Such a
new plan could add utility to the rest of the phase if
it is constructed in time to be “swapped in” for the re-
mainder of the phase. Finally, the mission is over when
one of two absorbing states are reached: (not alive)
or (home).

Delayed Events

Phase transitions and failures are represented as de-
layed events. The former reflect the fact that the
amount of time it will take for the UAV to avoid threats
and arrive at the next waypoint is uncertain. The lat-
ter models the fact that threats to the agent can trigger
asynchronously according to a probability distribution.
One difference between the two is that phase transitions
must happen in a predefined order: the agent will not
move on to phase 2 until phase 1 has been completed;
however, this is not the case with threats. Much of
the rationale for using tempastic-dtp is that events–
especially bad ones like transitions to failure–do not
invalidate other bad events when one of them occurs.
Therefore, the deliberation mechanism must be able
to model a domain in which certain combinations of
threats can occur in any order, and can remain enabled
concurrently. Planning to handle these combinations
of threats given uncertain information and an evolving
world state is the primary reason for performing online
deliberation scheduling in the first place. The asyn-
chrony of the events and actions can have a dramatic
effect on the optimality of the plan, and the amount of
utility attainable.

1This restriction makes specifying action preconditions
and effects cumbersome, and could be fairly easily fixed by
adding a bounded integer type to PPDDL+.

;;; Examples from the UAV deliberation domain.
;;;
(define (domain UAV-deliberation)
(:requirements :negative-preconditions

:gsmdp :rewards)
(:predicates

(alive) (home) (pic-taken)
(phv1)(phv2) ; 4 phases, binary-encoded
(sp11)(sp12) ; 4 quality levels/phase
(sp21)(sp22) (sp31)(sp32)
(ph1-help-requested-high))

;;; A mission phase transition event.
(:delayed-event phase-2-to-3
:delay (exponential (/ 1.0 100.0))
:condition (and (alive)

(phv1) ; in ph 2 (10)
(not phv2))

:effect (phv2)) ; -> ph 3 (11)

;;; A failure event.
(:delayed-event die-phase-1-med
:delay (exponential (/ 1.0 300.0))
:condition (and (alive) (not phv1) (phv2)

(not sp11) (sp12))
:effect (not (alive)))

;;; A deliberation action (with mean varied).
(:delayed-action improve-ph2-high
:delay (exponential (/ 1.0 (* 3.0 lambda)))
:condition (and (alive)) ; in any context
:effect (and (sp21) (not sp22))) ; -> high plan

;;; A domain action.
(:delayed-action take-recon-picture
:delay (exponential 1.0)
:condition (and (alive) (not pic-taken)

(phv1) (not phv2)) ; in ph2 (10)
:effect (and (pic-taken)

(increase (reward) 2))) ; goal

;;; An action requesting help from other agent.
(:delayed-action improve-ph1-request-help-high

:delay (exponential (/ 1.0 20.0))
:condition (and (alive)) ; in any context
:effect (ph1-help-requested-high)) ; -> help-high

;;; Other agent’s action modeled as a delayed event.
(:delayed-event improve-ph1-high-other-agent
:delay (exponential (/ 1.0 100.0))
:condition (and (alive)

(ph1-help-requested-high))
:effect (and (sp11) (not sp12)))

;; The problem description.
(define (problem delib1)
(:domain UAV-deliberation)
(:init (alive)) ; begin alive in phase 0
(:goal (home)) ; goal to return safely
(:goal-reward 1) ; one unit for safe return
(:metric maximize (reward)))

Figure 1: Partial PPDDL+ Domain Description.

Delayed Actions

Improvement actions are also delayed; i.e., when the
deliberation planner begins an improvement action,
the base-level planner will return an “answer” (ei-
ther an improved plan, or failure) at some future,
probabilistically-determined time. In the example
above, this time is described by the exponential time
distribution function where λ = 20 time units. This
reflects the fact that while we have some information
on the performance of the base-level planner, we can-
not predict–based only on the planner inputs–the ac-
tual duration of the planning activity. As we will see
shortly, this uncertainty should be taken into account
and traded off at the meta level along with other costs,
rewards, and uncertainties.

A second type of delayed action is a domain action.
In this domain, there is only one such non-deliberation
action: take-recon-picture. This action is funda-
mentally different from the other actions because it is
a physical action in the world (not a command to com-
mence deliberation on a specific planning problem), it
has a very short duration, and it constitutes the pri-
mary goal of the plan, thus earning the most reward.

Negotiation with Other Agents

Finally, we provide an example of an action/event com-
bination used to model negotiation and “remote” delib-
eration. Here, a distinguished action can be selected as
an indirect plan improvement action in which the orig-
inal agent requests assistance in handling a threat in a
certain phase. The negotiation phase of this exchange
is modeled as the fairly low-cost delayed action called
improve-ph1-request-help-high. When this action
is completed, the predicate ph1-help-requested-high
becomes true, enabling the preconditions for the de-
layed event improve-ph1-high-other-agent. This
event represents the original (requesting) agent’s view
of a second, cooperating agent deliberating on its be-
half. An important difference with a normal deliber-
ation action is that other actions can be chosen and
executed by the original agent while the second agent
deliberates. By representing negotiation as a control-
lable action (that takes time for the original agent),
along with an uncontrollable event (an event for which
we do have limited modeling information in the form
of a parametric probability distribution), we split the
overall exchange into distinct synchronous and asyn-
chronous parts. We believe that eventually the negoti-
ation portion can be best modeled as a series of asyn-
chronous processes to avoid the lock-step, multi-stage,
synchronous process that plagues many distributed
planning systems.

Experiments

tempastic-dtp (t-dtp) accepts PPDDL+ as an in-
put planning domain language. Based on this domain
description, it converts the problem into a GSMDP
which can then be approximated as a continuous-time

MDP using phase-type distributions (Younes & Sim-
mons 2004). If all events of a GSMDP have exponen-
tial delay distributions (as with the experimental re-
sults reported below), then the GSMDP is already a
continuous-time MDP with a factored transition model.
This continuous-time MDP can be solved exactly, for
example by using value iteration, or uniformization can
be used to obtain a discrete-time MDP if it is conve-
nient to use an existing solver for discrete-time models.

tempastic-dtp then uses Multi-Terminal Binary
Decision Diagrams (MTBDDs, aka, Algebraic Decision
Diagrams) to compactly represent the transition ma-
trix of a Markov process , similar to the approach pro-
posed by Hoey et al. (1999). For our UAV deliberation
scheduling domain, t-dtp uses expected finite-horizon
total reward as the measure to maximize. Once the
complete policy is constructed, t-dtp provides a simu-
lation facility for executing policies given specific, ran-
domly generated agent trajectories in the environment.

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 50 100 150 200 250 300

A
ve

ra
ge

 R
ew

ar
d

(m
ax

 3
.0

)

Average Deliberation Action Delay

Action Delays Equal
Action Delays in 1-3-5 Ratio

Figure 2: Average reward as a function of delibera-
tion action duration.

Figure 2 illustrates the effect of average deliberation
action duration (denoted as the variable lambda in Fig-
ure 1) on average reward obtained. For each average
duration, tempastic-dtp constructs a policy for the
planning problem partially described in Figure 1. This
policy is then used to dictate the agent’s behavior in
1000 simulations of the agent interacting with its envi-
ronment. In each simulation, random values are cho-
sen according to the stated (in this case, exponential)
probability distributions to determine particular delays
of actions and events in the domain. There are three
possible results of a given simulation:
1. In the best case, the agent survives the threats en-

countered and returns home safely. This agent will
earn two points of reward in mid-mission for achiev-
ing the goal of taking the reconnaissance picture, and
one point for a safe return, for a maximum total re-
ward of three points.

2. A partial success occurs when the agent survives long
enough to take the reconnaissance picture (which can

be electronically transmitted back to base), but does
not return home. Such an agent will earn two points.

3. In the worst case, the agent will not have constructed
plans that allow it to survive at least one of the early
threats it encounters, constituting a zero-reward mis-
sion.
Figure 2 contrasts the average reward obtained under

two different assumptions. In one case, deliberation ac-
tion delays obey an exponential probability distribution
with the indicated action delay mean (x value) regard-
less of resulting plan quality. In other words, the aver-
age delay for a deliberation action resulting in a high-
quality plan is the same as the average delay associated
with producing a medium-quality plan. In the other
case, action delay means obey a 1-3-5 ratio for medium,
high, and highest quality plans respectively. For exam-
ple, an average delay of 50 (shown as the x value) in-
dicates that a deliberation action with a medium-value
result will obey an exponential time distribution with a
mean of 50. The two higher quality plans will take cor-
respondingly longer on average, at 150 and 250 time
units respectively. As expected, higher rewards can
be obtained in the first case because producing higher
quality plans is less expensive for a given value of x.

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 50 100 150 200 250 300

A
ve

ra
ge

 R
ew

ar
d

(m
ax

 3
.0

)

Average Deliberation Action Delay

Negotiation actions available.
No negotiation actions.

Figure 3: The effect of inter-agent negotiation op-
tions on average reward.

Figure 3 shows the average reward obtained as an
agent’s own deliberation actions take longer (as con-
trasted with a second, cooperating agent’s actions). In
one case, negotiating for threat-handling help from a
cooperating agent is possible, while in the other, no
negotiation is possible. While negotiation action du-
ration and the other agent’s deliberation delay is un-
certain, the means of these probability distributions re-
main constant while the agent’s own deliberation action
durations increase.

Conclusion

We introduce a new approach to the problem of delib-
eration scheduling based on Generalized Semi-Markov
Decision Processes. Due to inherent advantages unique

to GSMDPs in which truly asynchronous events can be
properly modeled, we suggest a new way to model nego-
tiation with, and planning processes by, other cooper-
ating agents. In particular, we suggest that negotiation
actions, instigated by the original agent, be modeled as
delayed actions and that the other agent’s planning ef-
fort (action) be modeled as an asynchronous event from
the original agent’s perspective. In this way, the orig-
inal agent can make primary planning decisions about
which actions to take at any particular time by compar-
ing the long-term utility of its own actions, negotiation
actions with other agents, events involving cooperating
agents’ planning effort, and events viewed as threats to
its own survival.

Acknowledgments

Many thanks to Haakan Younes for developing, dis-
tributing, and supporting tempastic-dtp, and for
prompt, thorough answers to my many questions.
Thanks also to Vu Ha and David Musliner for fruitful
discussions and useful comments on earlier drafts.

References

Alur, R.; Courcoubetis, C.; and Dill, D. 1993. Model-
checking in dense real-time. Information and Compu-
tation 104(1):2–34.

Glynn, P. 1989. A GSMP formalism for discrete event
systems. Proceedings of the IEEE 77(1):14–23.

Goldman, R. P.; Musliner, D. J.; and Krebsbach, K. D.
2001. Managing online self-adaptation in real-time en-
vironments. In Proc. Second International Workshop
on Self Adaptive Software.

Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic planning using decision diagrams.
In Laskey, K. B., and Prade, H., eds., Proceedings of
the Fifteenth Conference on Uncertainty in Artificial
Intelligence, 279–288. Stockholm, Sweden: Morgan
Kaufmann Publishers.

Howard, R. A. 1960. Dynamic Programming and
Markov Processes. New York: John Wiley & Sons.

Howard, R. A. 1971. Dynamic Probabilistic Systems,
Volume II. New York, NY: John Wiley & Sons.

Matthes, K. 1962. Zur theorie der bedienungsprozesse.
In Transactions of the Third Prague Conference on
Information Theory, Statistical Decision Functions,
Random Processes, 513–528. Liblice, Czechoslovakia:
Publishing House of the Czechoslovak Academy of Sci-
ences.

Musliner, D. J.; Goldman, R. P.; and Krebsbach, K. D.
2003. Deliberation scheduling strategies for adaptive
mission planning in real-time environments. In Proc.
Third International Workshop on Self Adaptive Soft-
ware.

Shedler, G. S. 1993. Regenerative Stochastic Simula-
tion. San Diego, CA: Academic Press.

Younes, H., and Littman, M. 2004. PPDDL 1.0: An
extension to PDDL for expressing planning domains
with probabilistic effects. Technical Report CMU-CS-
04-167, Department of Computer Science, Carnegie
Mellon University, Pittsburgh, PA.

Younes, H. L. S., and Simmons, R. G. 2004. Solv-
ing generalized semi-Markov decision processes using
continuous phase-type distributions. In Proceedings of
the Nineteenth National Conference on Artificial In-
telligence, 742–747. San Jose, California: American
Association for Artificial Intelligence.

Younes, H.; Musliner, D.; and Simmons, R. 2003. A
framework for planning in continuous-time stochastic
domains. In Proceedings of the Thirteenth Conference
on Automated Planning and Scheduling.

Younes, H. 2003. Extending PDDL to model stochas-
tic decision processes. In Proceedings of the ICAPS-03
Workshop on PDDL, 95–103.

Younes, H. L. S. 2005. Verification and Planning
for Stochastic Processes with Asynchronous Events.
Ph.D. Dissertation, Department of Computer Science,
Carnegie Mellon University, Pittsburgh, PA.

