To appear in Working Notes of the AAAI Workshop on Robots, Softbots, Immobots: Theories of Action, Planning and Contr ol

Providence, Rhode Idand, July 28, 1997

The CIRCA Model of Planning and Execution

Robert P. Goldman and David J. Musliner and Mark S. Boddy and Kurt D. Krebsbach

Automated Reasoning Group
Honeywell Technology Center
3660 Technology Drive
Minneapolis, MN 55418
{goldman,musliner,boddy krebsbac}@htc.honeywell.com

Introduction

We are working to develop intelligent agents, using the
CIRCA architecture (Musliner, Durfee, & Shin 1993;
1995), that construct and execute plans for control-
ling embedded real-time systems. By “embedded,” we
mean that these systems are interacting with a dy-
namic environment including uncontrolled, exogenous
events. By “real-time,” we mean that catastrophic fail-
ure is possible if a timely control action is not taken
in certain situations. For these systems, control plans
must provide guarantees that failures will not occur.

In this position paper we discuss our revised version
of the CIRCA planning model. We start by reviewing
the CIRCA architecture, which couples a deliberative
planning component with a scheduler and a real-time
executive. A distinctive feature of CIRCA is that it
1s based on a memoryless and unclocked reactive exe-
cution engine, but nevertheless manages to meet hard
real-time constraints. A deliberative component of the
architecture reasons about control actions, sensing ac-
tions, exogenous events and timing in order to achieve
real-time behavior.

After reviewing the key features of CIRCA, we dis-
cuss a new planning technique, Dynamic Abstraction
Planning (Goldman et al. 1997), that provides us
with more efficient planning. We review the planning
model that allows us to generate reactive controllers
that provably meet real-time execution constraints. Fi-
nally, we discuss some ongoing extensions to the model.
These extensions will allow CIRCA agents to take ad-
vantage of reliable processes in their environment, mak-
ing them more capable controllers and allowing them
to interact with other agents.

CIRCA

CIRCA 1s designed to support both hard real-time re-
sponse guarantees and unrestricted Al methods that
can guide those real-time responses. Figure 1 illus-
trates the architecture, in which an AT subsystem (AIS)
reasons about high-level problems that require its pow-
erful but potentially unbounded planning methods,
while a separate real-time subsystem (RTS) reactively

Scheduler

selected reaction
control sensor data reactions schedules
signals
reaction schedules

‘ Real-Time Subsystem

World Model

feedback data

Al Subsystem

Figure 1: The Cooperative Intelligent Real-Time
Control Architecture.

executes the AIS-generated plans and enforces guaran-
teed response times. The AIS and Scheduler modules
cooperate to develop executable reaction plans that
will assure system safety and attempt to achieve sys-
tem goals when interpreted by the RTS.

CIRCA has been applied to real-time planning and
control problems in several domains including mobile
robotics and simulated autonomous aircraft. In this
paper we draw examples from a domain in which
CIRCA controls a simulated Puma robot arm that
must pack parts arriving on a conveyor belt into a
nearby box. The parts can have several shapes (e.g.,
square, rectangle, triangle), each of which requires a
different packing strategy. The control system may not
initially know how to pack all of the possible types of
parts— it may have to perform some computation to
derive an appropriate box-packing strategy. The robot
arm is also responsible for reacting to an emergency
alert light. If the light goes on, the system must push
the button next to the light before a fixed deadline.

In this domain, CIRCA’s planning and execution
subsystems operate in parallel. The AIS reasons about
an internal model of the world and dynamically pro-
grams the RTS with a planned set of reactions. While
the RTS is executing those reactions, ensuring that the
system avoids failure, the AIS is able to continue exe-
cuting heuristic planning methods to find the next ap-
propriate set of reactions. For example, the AIS may
derive a new box-packing algorithm that can handle a
new type of arriving part. The derivation of this new
algorithm does not need to meet a hard deadline, be-

EVENT emergency-alert
PRECONDS: ((emergency nil))
POSTCONDS: ((emergency T))

TEMPORAL emergency-failure
PRECONDS: ((emergency T))
POSTCONDS: ((failure T))
MIN-DELAY: 30 [seconds]

ACTION push-emergency-button
PRECONDS: ((part-in-gripper nil))

;; Emergency light goes on

Fail if don’t attend to

;; light by deadline

POSTCONDS: ((emergency nil) (robot-position over-button))

WORST-CASE-EXEC-TIME: 2.0 [seconds]

Figure 2: Example transition descriptions given to CIRCA’s planner.

cause the reactions concurrently executing on the RTS
will continue handling all arriving parts, just stacking
unfamiliar ones on a nearby table temporarily. When
the new box-packing algorithm has been developed and
integrated with additional reactions that prevent fail-
ure, the new schedule of reactions can be downloaded
to the RTS.

CIRCA’s planning system builds reaction plans
based on a world model and a set of formally-defined
safety conditions that must be satisfied by feasible
plans (Musliner, Durfee, & Shin 1995). To describe
a domain to CIRCA, the user inputs a set of transition
descriptions that implicitly define the set of reachable
states. For example, Figure 2 illustrates several transi-
tions used in the Puma domain. These transitions are
of three types:

Action transitions represent actions performed by

the RTS.

Temporal transitions represent the progression of
time and continuous processes.

Event transitions represent world occurrences as in-
stantaneous state changes.

The AIS plans by generating a nondeterministic fi-
nite automaton (NFA) from these transition descrip-
tions. The AIS assigns to each reachable state either
an action transition or no-op. Actions are selected to
preempt transitions that lead to failure states and to
drive the system towards states that satisfy as many
goal propositions as possible. The assignment of ac-
tions determine the topology of the NFA (and so the
set of reachable states): preemption of temporal tran-
sitions removes edges and assignment of actions adds
them. System safety is guaranteed by planning action
transitions that preempt all transitions to failure, mak-
ing the failure state unreachable (Musliner, Durfee, &

Shin 1995). Tt is this ability to build plans that guaran-
tee the correctness and timeliness of safety-preserving
reactions that makes CIRCA suited to mission-critical
applications in hard real-time domains.

The NFA is then translated into a memoryless con-
troller for downloading to the RTS. This is done
through a two-step process. First, the action assign-
ments in the NFA are compiled into a set of Test-Action
Pairs(TAPs). The tests are a set of boolean expres-
sions that distinguish between states where a particular
action is and is not to be executed. The test expression
is a function of the plan as a whole, rather than local
action assignments, because the same action may be as-
signed to more than one state. Some sample TAPs for
the Puma domain are given in Figure 3. The Max-per
indicates the maximum period at which the TAP must
be run in order to meet the deadlines.

Eventually, the TAPs will be downloaded to the RTS
to be executed. The RTS will loop over the set of
TAPs, checking each test expression and executing the
corresponding action if the test is satisfied. The tests
consist only of sensing the agent’s environment, rather
than checking any internal memory, so the RTS is asyn-
chronous and memoryless.

However, before the TAPs can be downloaded, they
must be assembled into a loop that will meet all of the
deadlines. These deadlines are captured as constraints
on the maximum period of the TAPs (see Figure 3).
This second phase of the translation process is done by
the scheduler. In this phase, CIRCA’s scheduler veri-
fies that all actions in the TAP loop will be executed
quickly enough to preempt the transitions the planner
has determined need preempting. The tests and ac-
tions that the RTS can execute as part of its TAPs have
associated worst-case execution times that are used to
verify the schedule. It is possible that scheduling will
not succeed. In this case, the AIS will backtrack to
the planner for the NFA to be revised, a new set of

#<TAP 10>
Tests (AND (PART_IN_GRIPPER NIL)
(EMERGENCY T))
Acts : push_emergency_button
Max-per : 9984774
Runtime : 2520010
#<TAP 9>
Tests : (AND
(PART_IN_GRIPPER NIL)
(EMERGENCY NIL)
(PART_ON_CONVEYOR T)
(NOT
(TYPE_OF_CONVEYOR_PART SQUARE)))
Acts : pickup_unknown_part_from_conveyor
Max-per : 12029856
Runtime : 3540010
#<TAP 8>
Tests : (AND
(TYPE_OF_CONVEYOR_PART SQUARE)
(PART_IN_GRIPPER NIL)
(EMERGENCY NIL))
Acts : pickup_known_part_from_conveyor
Max-per : 12029856
Runtime : 3520010

Figure 3: Sample output from the TAP compiler.

TAPs generated and scheduled. The planning process
is summarized in Figure 4.

Dynamic Abstraction Planning

The original CIRCA planner used a forward planning
algorithm similar to that of Kabanza et al. (1997). This
led to an explosion in the state space of the planner.
In recent work (Goldman et al. 1997), we have ad-
dressed this state-space explosion using a new planning
technique that we call Dynamic Abstraction Planning
(DAP). Abstraction is used to omit detail from the
state representation, reducing both the size of the state
space that must be explored to produce a plan, and
the size of the resulting plan itself. The abstraction
method we describe has three useful features:

1. The abstraction method does not compromise safety-
preserving guarantees: the world model used for
planning is reduced, but not in ways that affect the
system’s ability to make rigorous statements about
the safety assurances of plans it is building.

2. The method is fully automatic, and dynamically de-
termines the appropriate level of abstraction during
the planning process itself.

3. The method uses different levels of abstraction in
different parts of the search space, individually ad-
justing how much detail is omitted at each step.

The intuition behind DAP is fairly simple: in some sit-
uations, certain world features are important, while in
other situations those same features are not important.
An optimal state space representation would capture

Transition Descriptions Goals

™~

PLANNER
NFA
Temporal TAP Compiler
Constraints
TAPs
SCHEDULER

Verified TAP Schedule

Figure 4: Summary of the CIRCA planning process.

So S F
emergency-aert emergency-failure
(event) (temporal)

Figure 5: A partially-completed CIRCA plan.

only the important features for any particular state.
In essence, DAP allows a planner to search for useful
state space abstractions at the same time it is searching
for a plan.

DAP Technique

Recall that the problem of planning for CTRCA (set-
ting aside the question of TAP generation and schedul-
ing), is to assign to every reachable state in the state
space, an action that preserves safety. As mentioned
above, the original CIRCA planner assigned these ac-
tions working forward from a set of start states. The
CIRCA planner would maintain a frontier of reachable
states and would assign a suitable action to each reach-
able state.

In contrast, the DAP planner begins with a very
coarse NFA/plan, with all the non-failure states con-
solidated into a single state. DAP dynamically adds
more detail to this sketchy NFA. DAP refines the NFA
when it is unable to generate a satisfactory plan at the
current level of detail. DAP refines the NFA by tak-
ing an existing state and splitting it into a number of
more specific states, one for each possible value of a
particular feature, F;.

For example, let us consider the partially-completed
plan given in Figure 5. Here there are three states: the
failure state and two non-failure states, one for each
value of emergency, a boolean proposition. This ex-
ample is based on the domain model given in Figure 2.
We assume that emergency is nil when the system

push-emergency-button

- /(;CIIOH)

S0
S s eyency4failure ’
emergency-alert Emergency T em
Emergency NIL Part-in-gripper NIL ﬁ_ﬁf% FAILURE
preempted
S1,2

emergency-failure

Emergency T
Part-in-gripper T

Figure 6: A refinement of the NFA in Figure 5.

begins operation.

The NFA in Figure 5 is not safe, because there is
a reachable state, S7, from which there is a transi-
tion to the failure state (emergency-failure) that
has not been preempted. One way to fix this problem
would be to choose an action for 57 that will preempt
emergency-failure. The domain description contains
such an action, push-emergency-button. Unfortu-
nately, one of push-emergency-button’s preconditions
1s part-in-gripper= nil and Sp is not sufficiently
detailed to specify values for part-in-gripper. We
can rectify this omission by splitting S; into a set of
states, one for each value of part-in-gripper. The
resulting NFA is given in Figure 6. We can now assign
push-emergency-button to solve the problem posed
by state Sp 1. Further planning is required to resolve
the problem posed by S 2, either by finding a preempt-
ing action that does not require part-in-gripper =
nil or by making S » unreachable.

One unusual aspect of DAP is that detail is added
to the NFA only locally. In our example above, we
only added the feature part-in-gripper to the part
of the state space where the emergency feature took
on the value true, rather than refining all of the
states of the NFA symmetrically. This introduces new
nondeterminism: because we do not have a complete
model of the initial state, we cannot say whether the
emergency-alert transition will send the system to
state S11 or S 2.

Comparison to Other Abstraction
Techniques

Many classical planning systems have used abstraction
methods to increase the efficiency of searching for plans
(see (Kambhampati 1994) for a brief survey). However,
these abstractions are typically used only as guides in
searching for a plan; the system may not know that
its goals will actually be achieved by an abstract plan,
and 1t will not be able to execute the abstracted opera-
tors directly. Instead, traditional abstraction planners
must eventually expand their current plans down to
the lowest level of detail, removing the abstraction to
produce a final executable plan.

In the DAP approach, which involves abstraction
only of state descriptions, abstract plans are exe-

cutable, because the operators are always completely
specified. This has two main advantages. First, the
planning process can supply initial plans that preserve
safety but might, on further refinement, do a better job
of goal achievement. Second, the planning process can
terminate with an executable abstract plan, which our
results have shown may be much smaller than the cor-
responding plan expanded to precisely-defined states.

Dearden and Boutilier (1997) have developed an ab-
stract planning algorithm for decision-theoretic plan-
ning modeled as a Markov decision process (MDP).
Their method is similar to the DAP approach in that
it involves aggregating states, but there are some dif-
ferences. First, their method is not dynamic: aggrega-
tion is performed using a predefined set of “relevant”
propositions, which is determined using Knoblock’s ap-
proach (Knoblock 1994). Second, their method is uni-
form: the same propositions are relevant everywhere.
The underlying model is also significantly different
from CIRCA’s: it does not model exogenous events
or the timing required for real-time guarantees.

In previous work, Godefroid and Kabanza (1991) de-
veloped an abstraction technique based on partial or-
ders. Their results allow a system to examine only a
single ordering of independent actions, rather than enu-
merating all possible orderings. Unfortunately, these
results are not immediately applicable to CIRCA, be-
cause their world model does not include exogenous
events. The more recent work by Kabanza et al. (Ka-
banza, Barbeau, & St-Denis 1997) does include exoge-
nous events, but they do not seem to have carried over
the earlier abstraction concepts.

CIRCA Planning Model

The basic action model for CIRCA consists of states,
each of which has an associated truth assignment over
all the propositions in the domain of discourse, and
transitions, which allow movement from state to state.
Transitions can be partitioned on the basis of volition:
in the current planner, actions are volitional, events
and temporals are not. A transition is enabled in any
state for which its preconditions are satisfied. The pos-
sible states resulting from a transition from a given
state are those satisfying the transition’s postcondi-
tions. The postconditions are specified, per the conven-
tional STRIPS assumption, by listing only those literals
that change values — other literals retain their values.
The STRIPS assumption is loosened to a limited extent
by permitting nondeterministic actions;' such actions
have multiple sets of postconditions. The delay associ-
ated with a transition 1s known only in terms of upper

!There is no need to have nondeterministic events or
temporals — for those it suffices simply to have multiple
transitions.

and lower bounds.

A CIRCA planis a graph, in which nodes correspond
to sets of states and arcs represent possible transitions
between those sets. A transition is possibly (respec-
tively, necessarily) enabled if its preconditions are sat-
isfied for some (all) element(s) of the set of states cor-
responding to the originating node, and its postcondi-
tions satisfied for some (all) element(s) of the set cor-
responding to the destination node. A plan in which
all the node state sets have exactly one element corre-
sponds to the original CTIRCA planner (Musliner, Dur-
fee, & Shin 1995).

A well-formed plan is one in which an arc is present
for every possibly-enabled nonvolitional transition be-
tween nodes which 1s not preempted, and each node has
outgoing arcs for at most one action (non-deterministic
actions may require more than one arc). Preemption
is defined below.

Timing information for a CIRCA plan is derived
from bounds on the delay associated with arcs out of a
node, which is taken directly from the delay bounds for
the corresponding transitions. The latency of a transi-
tion arc with respect to a node in the plan is the time
before that transition will occur, if no other transition
occurs first, once some state in the set corresponding
to that node has been reached. Latency bounds are
path-dependent, which breaks the Markov assumption
for nodes. We restore this property by calculating and
employing path-independent bounds on latency in pro-
viding timing guarantees (most significantly, in deter-
mining preemption of transitions by actions).

Notation
e States: s € S.

The set of states associated with a node in the plan
graph we denote by S € 25. There being a 1 : 1
relationship between sets S and nodes, we will use
the set .S to refer to the node.

e Transitions: t € 7

— pre(t) — preconditions of transition ¢

- SEOCt=3se S, s =opre(t)
enabled at node S

— dias(t)

— dmin(t)

The fact that latency bounds are calculated based

on paths means that we must distinguish between
arcs and the associated transitions.

—t 1s possibly

— maximum delay for ¢

— minimum delay for ¢

o Arcs: a € A.

—tr(a) €T
— origin(a) € 2°

— the transition label on «

— the node from which a leads

— result(a) € 2° — the resulting node.

We will employ two syntactic substitutions:

— dmin(a), for dpmin(tr(a))

mutandis)
— a €(5,5), for origin(a) = S Aresult(a) = 5

(also dpay(a), mutatis

e Action assignments:

— act(5)

— the action assigned to state S

Transition timing

We assume that the “clock” for transition delay starts
as soon as an enabling node (one in which pre(t) is
possibly satisfied) is entered, and stops only when ei-
ther the transition occurs, or a node is entered in
which pre(t) is not possibly satisfied. In particular, the
clock keeps running across other transitions between
enabling nodes. This assumption applies to all transi-
tions, volitional and nonvolitional.

Events and temporals For nonvolitional transi-
tions (temporals and events), the bounds [dp;n, dmas)
are specified as part of the domain description. In the
current implementations, those bounds are:

e temporals: [d, o]
o events: [0, o0]

Actions Actions are more complicated. The bounds
on delay until an action happens are determined by
the current TAP schedule, and by the delay associated
with the action itself. One corollary of this statement
is that the transition bounds for a given action are to
a considerable extent determinable by the AIS.

Let’s take a more detailed look at action timing. Un-
der the control of a TAP schedule, the RTS takes a
“snapshot” of the current state. It then evaluates that
snapshot according to some test or sequence of tests,
and decides whether or not to perform a given action.
We assume complete and correct knowledge of the cur-
rent state, so determination of what action to perform
will be correct. The question 1s, how long will it take?
There is a physical minimum time before the action
could have an effect; consisting of the minimum time
required for a test and the time required for the action
itgelf. This is a “minimum upper bound” on the action
(a lower bound on any specifiable dpqz).

The precise execution of the TAP schedule is some-
thing we don’t need to deal with at this point. For
example, we neither need nor want to think about
whether a single snapshot is tested for several actions,
or whether each action takes its own snapshot. We
assume that taking the snapshot, as opposed to test-
ing, takes no time to accomplish. If this assumption

is relaxed, there’s another scheduling optimization in-
volved about when snapshots get taken and which tests
are done on which snapshot. The characteristic that
must be preserved is that the test for a given action
is performed on a succession of snapshots, taken with
no more than a specified maximum separation. The
maximum delay before the action takes effect is then
the sum of that maximum separation, the test delay,
and the time required for the action itself.

dmar for actions is not an intrinsic feature, it’s a
parameter set by the planner in the planning process.
Faced with a temporal transition to preempt, the plan-
ner can

e Choose an old action with a (previously specified)
sufficiently small d,,, 4, for that node.

e Choose an old action with an insufficiently small
dmae and specify a new, tighter bound.

e Choose a new action for the node and specify a suf-
ficiently small d,q4.

e Split the state, etc...

Note that any or all of these plan modifications may
require a new TAP schedule to be generated. This
suggests that the planner and scheduler should oper-
ate in fairly close synchronization. The current TAP
schedule limits the allowable values for d,, 4, for a given
action (which specification in turn constrains the space
of feasible schedules), while the suitability or otherwise
of an action to preempt a given transition (what was
previously called “applicability”) is determined by that
same specification.

Ghosting and inappropriate actions A further
complication with actions 1s that the test and action
are not atomic. It is entirely possible for some non-
volitional transition to occur between the time that
the current state is evaluated and the time the action
takes effect. It is therefore possible for an action to
be attempted in a state in which 1t is not technically
“enabled.”

The classical planning community calls these plans
“ill-formed.” For CIRCA, we adopt a similar conven-
tion, by defining the outcome of any such inappropri-
ate action to be a failure state. Some inappropriate
actions can be avoided by ensuring that the relevant
(temporal) transitions are preempted. Events leading
to unsuitable states cannot be preempted. This sit-
uation can be planned around, e.g. by splitting the
node (separating the action and the event), splitting
the event’s destination (making the action be enabled
in the result), choosing a different action, or declaring
the current state a failure state as well.

Definitions

Preemption of one transition by another at a node 1s
defined in terms of the latency bounds L.,i, and Lyqz:

preempts(t,t’,.S) = Liaz(t,S) < Lmin(t',S)

In words: ¢ preempts ¢’ in S iff ¢ is guaranteed to
occur before ¢’ once S is reached, no matter how you
got there.

The mazimum dwell of a node S is relevant because
we can guarantee that no transition out of that node
will take place with a longer delay.

Diaz(S) = aer?slg() Limaz (tr(a), S)

The lower bound on latency for a transition ¢ at a
node S is the lower bound on delay for ¢, unless there
are “enabling predecessors” (defined below), in which
case the lower bound on latency is the minimum value
derivable from those predecessors.

if ep(?,5) = 0 then

else

Lmin(t,S) = min

er'n (t’ S’ S/)
S'eep(t,s)

The lower bound on latency for S derivable from
an enabling predecessor S’ is recursively defined as
Lmin(t,S"), minus the maximum possible transition
time from S’ to S.

Lyin(t,5,8") = Linin(,5") = D}rau(S")

where
D%a(SY = min Dpas(9),
max Lonaz(tr(a), S')
othert(t,s’,s)
and

othert(t, S', S) = {a € (S, S)|tr(a) # t}

An enabling predecessor (ep) for t at .S is any node S’
at which ¢ is enabled, from which S is reachable by an
arc with some label other than t (otherwise the clock
resets).

ep(t, S) = {5'|S" = Ot ATa € (S, 9), tr(a) # t}

The upper bound on latency for ¢ at S is the max-
imum delay dpqz(t), unless there are enabling prede-
cessors, el cetera.
if Va, result(a) = S = origin(a) € ep(S) then

Lmaf(t’s) = max Lrnax(tasa S/)
S'eep(t,s)

otherwise

Lmax (ta S) = dmax (t)

The upper bound on latency for S derivable from
an enabling predecessor S’ is recursively defined as
Limaz(S') minus the minimum possible transition time
from S to S”.

Lran(t,5,8") = Lmas(t,S") —

min Linin(tr(a), S/)
othert(t,s’,s)

One of the interesting results of this timing model
is that one can achieve “better than real-time” perfor-
mance. Given a node with a troublesome temporal,
say one where Ly, 18 less than any achievable d,,qz
for the desired action(s), preemption can be guaranteed
by ensuring that the node 1s only reachable from nodes
at which the action is enabled, and only via temporal
transitions with a sufficiently large L,,;,. The current
planner does not exploit this opportunity, and we have
no immediate plans to do so.

There are several simplifications we can make. We
start by assuming that Ly (¢, S) = dmas(t) in all
cases. This assumption preserves the correctness of the
latency bounds and preemption calculations, by virtue
of the fact that Lpep(t,5) < dmar(t). The bound is
weaker only in the somewhat peculiar “better-than-
real-time” case described above.

This leads to additional simplifications. Here is the
complete set of revised definitions. By assumption:

Lmax (ta S) = dmax (t)

For the maximum dwell, we use the assumption above,
plus the fact that there i1s exactly one action specified
for an node in the plan graph (dpmqz (n0-0p) = co):

Dinaz (S) = dias (act(S))

Lpin does not change. However, L7, does:
Lrnm (ta Sa S/) == Lmzn (t, S/) - dmax(aCt(S/))

It doesn’t matter whether result(act(S’)) = S or not.
Also note that the definition of ep has not changed.

Algorithm

Calculating Lp,q; and D4, 18 reduced to lookup op-
erations. The simplified definition of L} .. above sug-
gests a simple depth-first graph search, from nodes
to their enabling predecessors. The algorithm has
an additional termination condition: terminate with
a bound of zero any time the summed “path cost”

(dmay values for the appropriate actions) is greater

than dpin(t). This termination condition allows this
algorithm to complete even in plans (graphs) with cy-
cles: once the computed L,,;, along any path drops to
(or below) 0, we’re done.

Related Work

Kabanza et al. (Kabanza, Barbeau, & St-Denis 1997)
have developed a planning method for reactive agents
that is similar to the original CIRCA. Their architec-
ture differs in emphasis, however. The NFAs it con-
structs are “clocked:” they make transitions at times
that are the least common denominator of all possi-
ble transitions. This scheme will suffer a state space
explosion in domains where there is a wide range of
possible transition delays, like those to which CIRCA
has been applied. Kabanza’s group has concentrated
on developing a more flexible notation for goals than
those used by CIRCA, but they do not make the same
distinction between safety and goal achievement.

Expanding Expressiveness

At the same time that we have been working to increase
the efficiency of CIRCA’s planning, we are working to
relax limits on its expressiveness. In doing this we have
been driven by consideration of the scenario outlined
by Gat in his paper “News From the Trenches: An
Overview of Unmanned Spacecraft for AT” (Gat 1996).

In this paper, Gat presented a planning scenario
from the Cassini mission that he argued no current Al
planning system could tackle. The problem concerns
the Saturn orbital insertion of the Cassini spacecraft.
In order to successfully navigate, the Cassini spacecraft
must have an inertial reference unit (IRU) powered up
and functioning. The spacecraft has a primary and a
secondary TRU. The problem is to foresee the possibil-
ity of a primary IRU failure and warm up both IRUs
early enough that they will be available for navigation
at the time of orbital insertion.

CIRCA is quite capable of planning to warm up both
IRUs, provided that it is informed that doing orbital
insertion without guidance is a failure and that the
primary IRU can fail. CIRCA can do this because,
unlike most other planners, ? CIRCA considers and
plans against, external events. CIRCA can warm up
the TRUs early enough, because of its temporal reason-
ing.

However, this scenario has led us to consider two
shortcomings of the current CIRCA approach. First,
CIRCA considers exogenous processes only as threats,
rather than as opportunities. CIRCA’s planner only
chooses either to preempt exogenous processes or al-
low them to happen. Accordingly, the current CIRCA

2With the exception of Blythe’s (1996) and Ka-
banza’s (Kabanza, Barbeau, & St-Denis 1997)

world model provides only lower bounds on the delay
of temporal transitions. This makes it impossible for
CIRCA to rely on external processes (like the warming
of an IRU), because doing so requires CIRCA to reason
about the upper bound on the duration of the warming
process.

A second shortcoming has to do with the lack of a
systemwide clock. Currently, CIRCA can reason only
about duration relative to the time it enters a partic-
ular state. In order to properly meet deadlines, as in
this example, where the IRUs must be warmed prior
to orbital insertion, the RTS must be able to act at an
appropriate time relative to a planned future event.

We have developed preliminary solutions to the
above two problems. The existing temporal model
already takes into account some upper bounds —
those on the duration of actions. We plan to ex-
pand the model to include reliable temporals, with up-
per bounds on their time of completion, together with
state-encoding of the progress of those processes.

We are also addressing the problem of CIRCA not
having a systemwide clock. We do not want to abandon
the unclocked executive, because inclusion of global
time into the state space can cause it to explode
(see comparison to Kabanza’s execution model earlier).
What we would like to do is to provide chosen clock sig-
nals for particular times to the RTS. It is certainly pos-
sible to provide such signals — for most applications
like autonomous spacecraft, there will be a system or
mission clock. What we need to be able to do is to
identify important times and set up signals to the RTS
accordingly. The RTS will then detect these signals
like any other state feature. Our preliminary investi-
gations suggest that we can detect the need for such
features through search failures in the AIS.

Overcoming these expressive limitations is an impor-
tant area of ongoing theoretical investigation at HTC.
We hope to begin experimenting with solutions to these
problems sometime this year.

Conclusions

In this paper we have presented our approach to achiev-
ing intelligent, real-time performance. This approach
is based around the coupling of a deliberative system
with a memoryless, unclocked real-time reactive execu-
tion module. Through its planning model, the system
is able to achieve real-time behavior without incorpo-
rating a representation of time in its execution engine.
We have discussed ways of efficiently manipulating this
model through dynamic abstraction. Finally, we intro-
duced current work on relaxing some of the limitations
imposed by the current planning model.

Acknowledgments This work was supported by the
Defense Advanced Research Projects Agency under
contract DAAK60-94-C-0040-P0006.

References

Blythe, J. 1996. A representation for efficient plan-
ning in dynamic domains with external events. in the
AAAT workshop on “Theories of Action, Planning and
Control: Bridging the gap”.

Dearden, R., and Boutilier, C. 1997. Abstraction
and approximate decision-theoretic planning. Artifi-

cial Intelligence 89(1-2):219-283.

Gat, E. 1996. News from the trenches: An overview of
unmanned spacecraft for AI. In Nourbakhsh, I., ed.,
AAAI Technical Report SS5-96-04: Planning with In-
complete Information for Robot Problems. American
Association for Artificial Intelligence. Available at
http://www-aig.jpl.nasa.gov/home/gat/gp.html.

Godefroid, P., and Kabanza, F. 1991. An efficient
reactive planner for synthesizing reactive plans. In
Proceedings of the Ninth National Conference on Ar-
tificial Intelligence, 640-645. Cambridge, MA: MIT

Press.

Goldman, R. P.; Musliner, D. J.; Krebsbach, K. D.;
and Boddy, M. S. 1997. Dynamic abstraction plan-
ning. To appear in the proceedings of the 1997 Na-
tional Conference on Artificial Intelligence.

Kabanza, F.; Barbeau, M.; and St-Denis, R. 1997.
Planning control rules for reactive agents. Technical
Report 197, Computer Science Dept., University of
Sherbrooke.

Kambhampati, S. 1994. Refinement search as a uni-
fying framework for analyzing planning algorithms.
In Doyle, J.; Sandewall, E.; and Torasso, P., eds.,
Principles of Knowledge Representation and Reason-
wng:Proceedings of the Fourth International Confer-
ence. Morgan Kaufmann Publishers, Inc.

Knoblock, C. A. 1994. Automatically generating ab-
stractions for planning. Artificial Intelligence 68:243—
302.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1993.
CIRCA: a cooperative intelligent real-time control ar-
chitecture. IEEE Transactions on Systems, Man and
Cybernetics 23(6):1561-1574.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1995.
World modeling for the dynamic construction of real-
time control plans. Artificial Intelligence 74(1):83-
127.

