
To appear in Working Notes of the AAAI Workshop on Robots, Softbots, Immobots: Theories of Action, Planning and Control
Providence, Rhode Island, July 28, 1997The CIRCA Model of Planning and ExecutionRobert P. Goldman and David J. Musliner and Mark S. Boddy and Kurt D. KrebsbachAutomated Reasoning GroupHoneywell Technology Center3660 Technology DriveMinneapolis, MN 55418fgoldman,musliner,boddy,krebsbacg@htc.honeywell.comIntroductionWe are working to develop intelligent agents, using theCIRCA architecture (Musliner, Durfee, & Shin 1993;1995), that construct and execute plans for control-ling embedded real-time systems. By \embedded," wemean that these systems are interacting with a dy-namic environment including uncontrolled, exogenousevents. By \real-time," we mean that catastrophic fail-ure is possible if a timely control action is not takenin certain situations. For these systems, control plansmust provide guarantees that failures will not occur.In this position paper we discuss our revised versionof the CIRCA planning model. We start by reviewingthe CIRCA architecture, which couples a deliberativeplanning component with a scheduler and a real-timeexecutive. A distinctive feature of CIRCA is that itis based on a memoryless and unclocked reactive exe-cution engine, but nevertheless manages to meet hardreal-time constraints. A deliberative component of thearchitecture reasons about control actions, sensing ac-tions, exogenous events and timing in order to achievereal-time behavior.After reviewing the key features of CIRCA, we dis-cuss a new planning technique, Dynamic AbstractionPlanning (Goldman et al. 1997), that provides uswith more e�cient planning. We review the planningmodel that allows us to generate reactive controllersthat provably meet real-time execution constraints. Fi-nally, we discuss some ongoing extensions to the model.These extensions will allow CIRCA agents to take ad-vantage of reliable processes in their environment, mak-ing them more capable controllers and allowing themto interact with other agents.CIRCACIRCA is designed to support both hard real-time re-sponse guarantees and unrestricted AI methods thatcan guide those real-time responses. Figure 1 illus-trates the architecture, in which an AI subsystem (AIS)reasons about high-level problems that require its pow-erful but potentially unbounded planning methods,while a separate real-time subsystem (RTS) reactively

sensor data

Environment

control
signals

Real-Time Subsystem
reaction schedules

feedback data

Scheduler

World Model

selected
reactions

reaction
schedules

AI SubsystemFigure 1: The Cooperative Intelligent Real-TimeControl Architecture.executes the AIS-generated plans and enforces guaran-teed response times. The AIS and Scheduler modulescooperate to develop executable reaction plans thatwill assure system safety and attempt to achieve sys-tem goals when interpreted by the RTS.CIRCA has been applied to real-time planning andcontrol problems in several domains including mobilerobotics and simulated autonomous aircraft. In thispaper we draw examples from a domain in whichCIRCA controls a simulated Puma robot arm thatmust pack parts arriving on a conveyor belt into anearby box. The parts can have several shapes (e.g.,square, rectangle, triangle), each of which requires adi�erent packing strategy. The control system may notinitially know how to pack all of the possible types ofparts| it may have to perform some computation toderive an appropriate box-packing strategy. The robotarm is also responsible for reacting to an emergencyalert light. If the light goes on, the system must pushthe button next to the light before a �xed deadline.In this domain, CIRCA's planning and executionsubsystems operate in parallel. The AIS reasons aboutan internal model of the world and dynamically pro-grams the RTS with a planned set of reactions. Whilethe RTS is executing those reactions, ensuring that thesystem avoids failure, the AIS is able to continue exe-cuting heuristic planning methods to �nd the next ap-propriate set of reactions. For example, the AIS mayderive a new box-packing algorithm that can handle anew type of arriving part. The derivation of this newalgorithm does not need to meet a hard deadline, be-

EVENT emergency-alert ;; Emergency light goes onPRECONDS: ((emergency nil))POSTCONDS: ((emergency T))TEMPORAL emergency-failure ;; Fail if don't attend toPRECONDS: ((emergency T)) ;; light by deadlinePOSTCONDS: ((failure T))MIN-DELAY: 30 [seconds]ACTION push-emergency-buttonPRECONDS: ((part-in-gripper nil))POSTCONDS: ((emergency nil) (robot-position over-button))WORST-CASE-EXEC-TIME: 2.0 [seconds]Figure 2: Example transition descriptions given to CIRCA's planner.cause the reactions concurrently executing on the RTSwill continue handling all arriving parts, just stackingunfamiliar ones on a nearby table temporarily. Whenthe new box-packing algorithmhas been developed andintegrated with additional reactions that prevent fail-ure, the new schedule of reactions can be downloadedto the RTS.CIRCA's planning system builds reaction plansbased on a world model and a set of formally-de�nedsafety conditions that must be satis�ed by feasibleplans (Musliner, Durfee, & Shin 1995). To describea domain to CIRCA, the user inputs a set of transitiondescriptions that implicitly de�ne the set of reachablestates. For example, Figure 2 illustrates several transi-tions used in the Puma domain. These transitions areof three types:Action transitions represent actions performed bythe RTS.Temporal transitions represent the progression oftime and continuous processes.Event transitions represent world occurrences as in-stantaneous state changes.The AIS plans by generating a nondeterministic �-nite automaton (NFA) from these transition descrip-tions. The AIS assigns to each reachable state eitheran action transition or no-op. Actions are selected topreempt transitions that lead to failure states and todrive the system towards states that satisfy as manygoal propositions as possible. The assignment of ac-tions determine the topology of the NFA (and so theset of reachable states): preemption of temporal tran-sitions removes edges and assignment of actions addsthem. System safety is guaranteed by planning actiontransitions that preempt all transitions to failure, mak-ing the failure state unreachable (Musliner, Durfee, &

Shin 1995). It is this ability to build plans that guaran-tee the correctness and timeliness of safety-preservingreactions that makes CIRCA suited to mission-criticalapplications in hard real-time domains.The NFA is then translated into a memoryless con-troller for downloading to the RTS. This is donethrough a two-step process. First, the action assign-ments in the NFA are compiled into a set ofTest-ActionPairs(TAPs). The tests are a set of boolean expres-sions that distinguish between states where a particularaction is and is not to be executed. The test expressionis a function of the plan as a whole, rather than localaction assignments, because the same action may be as-signed to more than one state. Some sample TAPs forthe Puma domain are given in Figure 3. The Max-perindicates the maximumperiod at which the TAP mustbe run in order to meet the deadlines.Eventually, the TAPs will be downloaded to the RTSto be executed. The RTS will loop over the set ofTAPs, checking each test expression and executing thecorresponding action if the test is satis�ed. The testsconsist only of sensing the agent's environment, ratherthan checking any internal memory, so the RTS is asyn-chronous and memoryless.However, before the TAPs can be downloaded, theymust be assembled into a loop that will meet all of thedeadlines. These deadlines are captured as constraintson the maximum period of the TAPs (see Figure 3).This second phase of the translation process is done bythe scheduler. In this phase, CIRCA's scheduler veri-�es that all actions in the TAP loop will be executedquickly enough to preempt the transitions the plannerhas determined need preempting. The tests and ac-tions that the RTS can execute as part of its TAPs haveassociated worst-case execution times that are used toverify the schedule. It is possible that scheduling willnot succeed. In this case, the AIS will backtrack tothe planner for the NFA to be revised, a new set of

#<TAP 10>Tests : (AND (PART_IN_GRIPPER NIL)(EMERGENCY T))Acts : push_emergency_buttonMax-per : 9984774Runtime : 2520010#<TAP 9>Tests : (AND(PART_IN_GRIPPER NIL)(EMERGENCY NIL)(PART_ON_CONVEYOR T)(NOT(TYPE_OF_CONVEYOR_PART SQUARE)))Acts : pickup_unknown_part_from_conveyorMax-per : 12029856Runtime : 3540010#<TAP 8>Tests : (AND(TYPE_OF_CONVEYOR_PART SQUARE)(PART_IN_GRIPPER NIL)(EMERGENCY NIL))Acts : pickup_known_part_from_conveyorMax-per : 12029856Runtime : 3520010Figure 3: Sample output from the TAP compiler.TAPs generated and scheduled. The planning processis summarized in Figure 4.Dynamic Abstraction PlanningThe original CIRCA planner used a forward planningalgorithmsimilar to that of Kabanza et al. (1997). Thisled to an explosion in the state space of the planner.In recent work (Goldman et al. 1997), we have ad-dressed this state-space explosion using a new planningtechnique that we call Dynamic Abstraction Planning(DAP). Abstraction is used to omit detail from thestate representation, reducing both the size of the statespace that must be explored to produce a plan, andthe size of the resulting plan itself. The abstractionmethod we describe has three useful features:1. The abstraction method does not compromise safety-preserving guarantees: the world model used forplanning is reduced, but not in ways that a�ect thesystem's ability to make rigorous statements aboutthe safety assurances of plans it is building.2. The method is fully automatic, and dynamically de-termines the appropriate level of abstraction duringthe planning process itself.3. The method uses di�erent levels of abstraction indi�erent parts of the search space, individually ad-justing how much detail is omitted at each step.The intuition behind DAP is fairly simple: in some sit-uations, certain world features are important, while inother situations those same features are not important.An optimal state space representation would capture

Transition Descriptions Goals

Temporal
Constraints

NFA

TAPs

Verified TAP Schedule

PLANNER

TAP Compiler

SCHEDULERFigure 4: Summary of the CIRCA planning process.
FAILUREEmergency NIL Emergency T

S1
emergency-alert

F

emergency-failure

(event) (temporal)

S0Figure 5: A partially-completed CIRCA plan.only the important features for any particular state.In essence, DAP allows a planner to search for usefulstate space abstractions at the same time it is searchingfor a plan.DAP TechniqueRecall that the problem of planning for CIRCA (set-ting aside the question of TAP generation and schedul-ing), is to assign to every reachable state in the statespace, an action that preserves safety. As mentionedabove, the original CIRCA planner assigned these ac-tions working forward from a set of start states. TheCIRCA planner would maintain a frontier of reachablestates and would assign a suitable action to each reach-able state.In contrast, the DAP planner begins with a verycoarse NFA/plan, with all the non-failure states con-solidated into a single state. DAP dynamically addsmore detail to this sketchy NFA. DAP re�nes the NFAwhen it is unable to generate a satisfactory plan at thecurrent level of detail. DAP re�nes the NFA by tak-ing an existing state and splitting it into a number ofmore speci�c states, one for each possible value of aparticular feature, Fi.For example, let us consider the partially-completedplan given in Figure 5. Here there are three states: thefailure state and two non-failure states, one for eachvalue of emergency, a boolean proposition. This ex-ample is based on the domain model given in Figure 2.We assume that emergency is nil when the system

FAILUREEmergency NIL

S0

S1,1

emergency-alert emergency-failure

emergency-failure

F

push-emergency-button

(action)

Emergency T
Part-in-gripper NIL

Part-in-gripper T
Emergency T

S1,2

preemptedFigure 6: A re�nement of the NFA in Figure 5.begins operation.The NFA in Figure 5 is not safe, because there isa reachable state, S1, from which there is a transi-tion to the failure state (emergency-failure) thathas not been preempted. One way to �x this problemwould be to choose an action for S1 that will preemptemergency-failure. The domain description containssuch an action, push-emergency-button. Unfortu-nately, one of push-emergency-button's preconditionsis part-in-gripper= nil and S1 is not su�cientlydetailed to specify values for part-in-gripper. Wecan rectify this omission by splitting S1 into a set ofstates, one for each value of part-in-gripper. Theresulting NFA is given in Figure 6. We can now assignpush-emergency-button to solve the problem posedby state S1;1. Further planning is required to resolvethe problem posed by S1;2, either by �nding a preempt-ing action that does not require part-in-gripper =nil or by making S1;2 unreachable.One unusual aspect of DAP is that detail is addedto the NFA only locally. In our example above, weonly added the feature part-in-gripper to the partof the state space where the emergency feature tookon the value true, rather than re�ning all of thestates of the NFA symmetrically. This introduces newnondeterminism: because we do not have a completemodel of the initial state, we cannot say whether theemergency-alert transition will send the system tostate S1;1 or S1;2.Comparison to Other AbstractionTechniquesMany classical planning systems have used abstractionmethods to increase the e�ciency of searching for plans(see (Kambhampati 1994) for a brief survey). However,these abstractions are typically used only as guides insearching for a plan; the system may not know thatits goals will actually be achieved by an abstract plan,and it will not be able to execute the abstracted opera-tors directly. Instead, traditional abstraction plannersmust eventually expand their current plans down tothe lowest level of detail, removing the abstraction toproduce a �nal executable plan.In the DAP approach, which involves abstractiononly of state descriptions, abstract plans are exe-

cutable, because the operators are always completelyspeci�ed. This has two main advantages. First, theplanning process can supply initial plans that preservesafety but might, on further re�nement, do a better jobof goal achievement. Second, the planning process canterminate with an executable abstract plan, which ourresults have shown may be much smaller than the cor-responding plan expanded to precisely-de�ned states.Dearden and Boutilier (1997) have developed an ab-stract planning algorithm for decision-theoretic plan-ning modeled as a Markov decision process (MDP).Their method is similar to the DAP approach in thatit involves aggregating states, but there are some dif-ferences. First, their method is not dynamic: aggrega-tion is performed using a prede�ned set of \relevant"propositions, which is determined using Knoblock's ap-proach (Knoblock 1994). Second, their method is uni-form: the same propositions are relevant everywhere.The underlying model is also signi�cantly di�erentfrom CIRCA's: it does not model exogenous eventsor the timing required for real-time guarantees.In previous work, Godefroid and Kabanza (1991) de-veloped an abstraction technique based on partial or-ders. Their results allow a system to examine only asingle ordering of independent actions, rather than enu-merating all possible orderings. Unfortunately, theseresults are not immediately applicable to CIRCA, be-cause their world model does not include exogenousevents. The more recent work by Kabanza et al. (Ka-banza, Barbeau, & St-Denis 1997) does include exoge-nous events, but they do not seem to have carried overthe earlier abstraction concepts.CIRCA Planning ModelThe basic action model for CIRCA consists of states,each of which has an associated truth assignment overall the propositions in the domain of discourse, andtransitions, which allow movement from state to state.Transitions can be partitioned on the basis of volition:in the current planner, actions are volitional, eventsand temporals are not. A transition is enabled in anystate for which its preconditions are satis�ed. The pos-sible states resulting from a transition from a givenstate are those satisfying the transition's postcondi-tions. The postconditions are speci�ed, per the conven-tional Strips assumption, by listing only those literalsthat change values | other literals retain their values.The Strips assumption is loosened to a limited extentby permitting nondeterministic actions;1 such actionshave multiple sets of postconditions. The delay associ-ated with a transition is known only in terms of upper1There is no need to have nondeterministic events ortemporals | for those it su�ces simply to have multipletransitions.

and lower bounds.A CIRCA plan is a graph, in which nodes correspondto sets of states and arcs represent possible transitionsbetween those sets. A transition is possibly (respec-tively, necessarily) enabled if its preconditions are sat-is�ed for some (all) element(s) of the set of states cor-responding to the originating node, and its postcondi-tions satis�ed for some (all) element(s) of the set cor-responding to the destination node. A plan in whichall the node state sets have exactly one element corre-sponds to the original CIRCA planner (Musliner, Dur-fee, & Shin 1995).A well-formed plan is one in which an arc is presentfor every possibly-enabled nonvolitional transition be-tween nodes which is not preempted, and each node hasoutgoing arcs for at most one action (non-deterministicactions may require more than one arc). Preemptionis de�ned below.Timing information for a CIRCA plan is derivedfrom bounds on the delay associated with arcs out of anode, which is taken directly from the delay bounds forthe corresponding transitions. The latency of a transi-tion arc with respect to a node in the plan is the timebefore that transition will occur, if no other transitionoccurs �rst, once some state in the set correspondingto that node has been reached. Latency bounds arepath-dependent, which breaks the Markov assumptionfor nodes. We restore this property by calculating andemploying path-independent bounds on latency in pro-viding timing guarantees (most signi�cantly, in deter-mining preemption of transitions by actions).Notation� States: s 2 S.The set of states associated with a node in the plangraph we denote by S 2 2S . There being a 1 : 1relationship between sets S and nodes, we will usethe set S to refer to the node.� Transitions: t 2 T{ pre(t) { preconditions of transition t{ S j= 3t � 9s 2 S; s j= pre(t) { t is possiblyenabled at node S{ dmax(t) { maximum delay for t{ dmin(t) { minimum delay for tThe fact that latency bounds are calculated basedon paths means that we must distinguish betweenarcs and the associated transitions.� Arcs: a 2 A.{ tr(a) 2 T { the transition label on a{ origin(a) 2 2S { the node from which a leads

{ result(a) 2 2S { the resulting node.We will employ two syntactic substitutions:{ dmin(a), for dmin(tr(a)) (also dmax(a), mutatismutandis){ a 2 (S; S0), for origin(a) = S ^ result(a) = S0� Action assignments:{ act(S) { the action assigned to state STransition timingWe assume that the \clock" for transition delay startsas soon as an enabling node (one in which pre(t) ispossibly satis�ed) is entered, and stops only when ei-ther the transition occurs, or a node is entered inwhich pre(t) is not possibly satis�ed. In particular, theclock keeps running across other transitions betweenenabling nodes. This assumption applies to all transi-tions, volitional and nonvolitional.Events and temporals For nonvolitional transi-tions (temporals and events), the bounds [dmin; dmax]are speci�ed as part of the domain description. In thecurrent implementations, those bounds are:� temporals: [d;1]� events: [0;1]Actions Actions are more complicated. The boundson delay until an action happens are determined bythe current TAP schedule, and by the delay associatedwith the action itself. One corollary of this statementis that the transition bounds for a given action are toa considerable extent determinable by the AIS.Let's take a more detailed look at action timing. Un-der the control of a TAP schedule, the RTS takes a\snapshot" of the current state. It then evaluates thatsnapshot according to some test or sequence of tests,and decides whether or not to perform a given action.We assume complete and correct knowledge of the cur-rent state, so determination of what action to performwill be correct. The question is, how long will it take?There is a physical minimum time before the actioncould have an e�ect, consisting of the minimum timerequired for a test and the time required for the actionitself. This is a \minimumupper bound" on the action(a lower bound on any speci�able dmax).The precise execution of the TAP schedule is some-thing we don't need to deal with at this point. Forexample, we neither need nor want to think aboutwhether a single snapshot is tested for several actions,or whether each action takes its own snapshot. Weassume that taking the snapshot, as opposed to test-ing, takes no time to accomplish. If this assumption

is relaxed, there's another scheduling optimization in-volved about when snapshots get taken and which testsare done on which snapshot. The characteristic thatmust be preserved is that the test for a given actionis performed on a succession of snapshots, taken withno more than a speci�ed maximum separation. Themaximum delay before the action takes e�ect is thenthe sum of that maximum separation, the test delay,and the time required for the action itself.dmax for actions is not an intrinsic feature, it's aparameter set by the planner in the planning process.Faced with a temporal transition to preempt, the plan-ner can� Choose an old action with a (previously speci�ed)su�ciently small dmax for that node.� Choose an old action with an insu�ciently smalldmax and specify a new, tighter bound.� Choose a new action for the node and specify a suf-�ciently small dmax.� Split the state, etc...Note that any or all of these plan modi�cations mayrequire a new TAP schedule to be generated. Thissuggests that the planner and scheduler should oper-ate in fairly close synchronization. The current TAPschedule limits the allowable values for dmax for a givenaction (which speci�cation in turn constrains the spaceof feasible schedules), while the suitability or otherwiseof an action to preempt a given transition (what waspreviously called \applicability") is determined by thatsame speci�cation.Ghosting and inappropriate actions A furthercomplication with actions is that the test and actionare not atomic. It is entirely possible for some non-volitional transition to occur between the time thatthe current state is evaluated and the time the actiontakes e�ect. It is therefore possible for an action tobe attempted in a state in which it is not technically\enabled."The classical planning community calls these plans\ill-formed." For CIRCA, we adopt a similar conven-tion, by de�ning the outcome of any such inappropri-ate action to be a failure state. Some inappropriateactions can be avoided by ensuring that the relevant(temporal) transitions are preempted. Events leadingto unsuitable states cannot be preempted. This sit-uation can be planned around, e.g. by splitting thenode (separating the action and the event), splittingthe event's destination (making the action be enabledin the result), choosing a di�erent action, or declaringthe current state a failure state as well.

De�nitionsPreemption of one transition by another at a node isde�ned in terms of the latency bounds Lmin and Lmax:preempts(t; t0; S) � Lmax(t; S) < Lmin(t0; S)In words: t preempts t0 in S i� t is guaranteed tooccur before t0 once S is reached, no matter how yougot there.The maximum dwell of a node S is relevant becausewe can guarantee that no transition out of that nodewill take place with a longer delay.Dmax(S) = mina2(S;X)Lmax(tr(a); S)The lower bound on latency for a transition t at anode S is the lower bound on delay for t, unless thereare \enabling predecessors" (de�ned below), in whichcase the lower bound on latency is the minimum valuederivable from those predecessors.if ep(t; S) = ; thenLmin(t; S) = dmin(t)else Lmin(t; S) = minS02ep(t;S)L�min(t; S; S0)The lower bound on latency for S derivable froman enabling predecessor S0 is recursively de�ned asLmin(t; S0), minus the maximum possible transitiontime from S0 to S.L�min(t; S; S0) = Lmin(t; S0)�D�max(S0)where D�max(S0) = minDmax(S0);maxothert(t;S0 ;S)Lmax(tr(a); S0)and othert(t; S0; S) = fa 2 (S0; S)jtr(a) 6= tgAn enabling predecessor (ep) for t at S is any node S0at which t is enabled, from which S is reachable by anarc with some label other than t (otherwise the clockresets).ep(t; S) = fS0jS0 j= 3t^ 9a 2 (S0; S); tr(a) 6= tgThe upper bound on latency for t at S is the max-imum delay dmax(t), unless there are enabling prede-cessors, et cetera.if 8a; result(a) = S) origin(a) 2 ep(S) thenLmax(t; S) = maxS02ep(t;S)L�max(t; S; S0)

otherwise Lmax(t; S) = dmax(t)The upper bound on latency for S derivable froman enabling predecessor S0 is recursively de�ned asLmax(S0) minus the minimum possible transition timefrom S to S0.L�max(t; S; S0) = Lmax(t; S0)�minothert(t;S0 ;S)Lmin(tr(a); S0)One of the interesting results of this timing modelis that one can achieve \better than real-time" perfor-mance. Given a node with a troublesome temporal,say one where Lmin is less than any achievable dmaxfor the desired action(s), preemption can be guaranteedby ensuring that the node is only reachable from nodesat which the action is enabled, and only via temporaltransitions with a su�ciently large Lmin. The currentplanner does not exploit this opportunity, and we haveno immediate plans to do so.There are several simpli�cations we can make. Westart by assuming that Lmax(t; S) = dmax(t) in allcases. This assumption preserves the correctness of thelatency bounds and preemption calculations, by virtueof the fact that Lmax(t; S) � dmax(t). The bound isweaker only in the somewhat peculiar \better-than-real-time" case described above.This leads to additional simpli�cations. Here is thecomplete set of revised de�nitions. By assumption:Lmax(t; S) = dmax(t)For the maximumdwell, we use the assumption above,plus the fact that there is exactly one action speci�edfor an node in the plan graph (dmax(no-op) =1):Dmax(S) = dmax(act(S))Lmin does not change. However, L�min does:L�min(t; S; S0) = Lmin(t; S0)� dmax(act(S0))It doesn't matter whether result(act(S0)) = S or not.Also note that the de�nition of ep has not changed.AlgorithmCalculating Lmax and Dmax is reduced to lookup op-erations. The simpli�ed de�nition of L�min above sug-gests a simple depth-�rst graph search, from nodesto their enabling predecessors. The algorithm hasan additional termination condition: terminate witha bound of zero any time the summed \path cost"(dmax values for the appropriate actions) is greater

than dmin(t). This termination condition allows thisalgorithm to complete even in plans (graphs) with cy-cles: once the computed Lmin along any path drops to(or below) 0, we're done.Related WorkKabanza et al. (Kabanza, Barbeau, & St-Denis 1997)have developed a planning method for reactive agentsthat is similar to the original CIRCA. Their architec-ture di�ers in emphasis, however. The NFAs it con-structs are \clocked:" they make transitions at timesthat are the least common denominator of all possi-ble transitions. This scheme will su�er a state spaceexplosion in domains where there is a wide range ofpossible transition delays, like those to which CIRCAhas been applied. Kabanza's group has concentratedon developing a more
exible notation for goals thanthose used by CIRCA, but they do not make the samedistinction between safety and goal achievement.Expanding ExpressivenessAt the same time that we have been working to increasethe e�ciency of CIRCA's planning, we are working torelax limits on its expressiveness. In doing this we havebeen driven by consideration of the scenario outlinedby Gat in his paper \News From the Trenches: AnOverview of Unmanned Spacecraft for AI" (Gat 1996).In this paper, Gat presented a planning scenariofrom the Cassini mission that he argued no current AIplanning system could tackle. The problem concernsthe Saturn orbital insertion of the Cassini spacecraft.In order to successfully navigate, the Cassini spacecraftmust have an inertial reference unit (IRU) powered upand functioning. The spacecraft has a primary and asecondary IRU. The problem is to foresee the possibil-ity of a primary IRU failure and warm up both IRUsearly enough that they will be available for navigationat the time of orbital insertion.CIRCA is quite capable of planning to warm up bothIRUs, provided that it is informed that doing orbitalinsertion without guidance is a failure and that theprimary IRU can fail. CIRCA can do this because,unlike most other planners, 2 CIRCA considers andplans against, external events. CIRCA can warm upthe IRUs early enough, because of its temporal reason-ing.However, this scenario has led us to consider twoshortcomings of the current CIRCA approach. First,CIRCA considers exogenous processes only as threats,rather than as opportunities. CIRCA's planner onlychooses either to preempt exogenous processes or al-low them to happen. Accordingly, the current CIRCA2With the exception of Blythe's (1996) and Ka-banza's (Kabanza, Barbeau, & St-Denis 1997)

world model provides only lower bounds on the delayof temporal transitions. This makes it impossible forCIRCA to rely on external processes (like the warmingof an IRU), because doing so requires CIRCA to reasonabout the upper bound on the duration of the warmingprocess.A second shortcoming has to do with the lack of asystemwide clock. Currently, CIRCA can reason onlyabout duration relative to the time it enters a partic-ular state. In order to properly meet deadlines, as inthis example, where the IRUs must be warmed priorto orbital insertion, the RTS must be able to act at anappropriate time relative to a planned future event.We have developed preliminary solutions to theabove two problems. The existing temporal modelalready takes into account some upper bounds |those on the duration of actions. We plan to ex-pand the model to include reliable temporals, with up-per bounds on their time of completion, together withstate-encoding of the progress of those processes.We are also addressing the problem of CIRCA nothaving a systemwide clock. We do not want to abandonthe unclocked executive, because inclusion of globaltime into the state space can cause it to explode(see comparison to Kabanza's execution model earlier).What we would like to do is to provide chosen clock sig-nals for particular times to the RTS. It is certainly pos-sible to provide such signals | for most applicationslike autonomous spacecraft, there will be a system ormission clock. What we need to be able to do is toidentify important times and set up signals to the RTSaccordingly. The RTS will then detect these signalslike any other state feature. Our preliminary investi-gations suggest that we can detect the need for suchfeatures through search failures in the AIS.Overcoming these expressive limitations is an impor-tant area of ongoing theoretical investigation at HTC.We hope to begin experimenting with solutions to theseproblems sometime this year.ConclusionsIn this paper we have presented our approach to achiev-ing intelligent, real-time performance. This approachis based around the coupling of a deliberative systemwith a memoryless, unclocked real-time reactive execu-tion module. Through its planning model, the systemis able to achieve real-time behavior without incorpo-rating a representation of time in its execution engine.We have discussed ways of e�ciently manipulating thismodel through dynamic abstraction. Finally, we intro-duced current work on relaxing some of the limitationsimposed by the current planning model.

Acknowledgments This work was supported by theDefense Advanced Research Projects Agency undercontract DAAK60-94-C-0040-P0006.ReferencesBlythe, J. 1996. A representation for e�cient plan-ning in dynamic domains with external events. in theAAAI workshop on \Theories of Action, Planning andControl: Bridging the gap".Dearden, R., and Boutilier, C. 1997. Abstractionand approximate decision-theoretic planning. Arti�-cial Intelligence 89(1{2):219{283.Gat, E. 1996. News from the trenches: An overview ofunmanned spacecraft for AI. In Nourbakhsh, I., ed.,AAAI Technical Report SSS-96-04: Planning with In-complete Information for Robot Problems. AmericanAssociation for Arti�cial Intelligence. Available athttp://www-aig.jpl.nasa.gov/home/gat/gp.html.Godefroid, P., and Kabanza, F. 1991. An e�cientreactive planner for synthesizing reactive plans. InProceedings of the Ninth National Conference on Ar-ti�cial Intelligence, 640{645. Cambridge, MA: MITPress.Goldman, R. P.; Musliner, D. J.; Krebsbach, K. D.;and Boddy, M. S. 1997. Dynamic abstraction plan-ning. To appear in the proceedings of the 1997 Na-tional Conference on Arti�cial Intelligence.Kabanza, F.; Barbeau, M.; and St-Denis, R. 1997.Planning control rules for reactive agents. TechnicalReport 197, Computer Science Dept., University ofSherbrooke.Kambhampati, S. 1994. Re�nement search as a uni-fying framework for analyzing planning algorithms.In Doyle, J.; Sandewall, E.; and Torasso, P., eds.,Principles of Knowledge Representation and Reason-ing:Proceedings of the Fourth International Confer-ence. Morgan Kaufmann Publishers, Inc.Knoblock, C. A. 1994. Automatically generating ab-stractions for planning. Arti�cial Intelligence 68:243{302.Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1993.CIRCA: a cooperative intelligent real-time control ar-chitecture. IEEE Transactions on Systems, Man andCybernetics 23(6):1561{1574.Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1995.World modeling for the dynamic construction of real-time control plans. Arti�cial Intelligence 74(1):83{127.

