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Introduction

It is easy to recognize mathematics. There is an explicit and complete list
of assumptions, the definitions are formal and unambiguous, calculations and
deductions follow the rules of logic unfailingly, the conclusions are unavoidable
and unassailable. Now, a given argument may make some of its assumptions
clear, may use certain of its terms carefully, may present conclusions which are
more or less convincing. In this sense one argument may be more mathematical
than another, but there is really no middle ground at all between arguments
which are formal mathematics and those which are not. It is a target with
only the bull’s-eye and nothing else. Once the ancient Greek geometers saw
how many interesting consequences could be derived rigorously from a few
rather innocuous axioms, the idea spread that the constraints of mathematical
method could be applied to an endless variety of problems. And they were
and are.

The insistence on correctness and formality at every level of a mathemat-
ical argument might lead one to believe that the subject is cold, mechanical.
Certainly the proof of some particular fact, or the solution to some particular
problem, should have a certain coldness. But it is the coldness of certainty,
not that of personal indifference. Proofs themselves, the finished products of
mathematical investigation, come about only as a very human mind (yours!)
grapples with the issues at hand. An electrical wire is cold in the sense that it
conducts electricity rather effortlessly, but if the point is to light up the room
then we want to waste as little energy as possible in conducting the current.
A mathematician wants to waste as little doubt as possible (none!) on the
certainty of mathematical results.

This text introduces abstract algebra for a course in which you will begin
learning to read, write, remember, and do mathematics. To this end we will
study elementary number theory and the theory of groups – subjects funda-
mental not just to advanced mathematics, but to virtually every discipline
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vi INTRODUCTION

of quantitative science. More importantly from our point of view, they are
intrinsically interesting, and we can prove results of significance starting from
scratch.

Toward the end of the nineteenth century, it became clear that group the-
ory, which arose in many different contexts from the study of symmetries and
permutations, could be used to unite and organize many of the mathematical
disciplines. The use of groups over the past couple of centuries has yielded
fundamental insights in the study of polynomial equations, geometry, differen-
tial equations, and other disciplines in mathematics, as well as in physics and
chemistry. Furthermore, some of the most exciting breakthroughs in math-
ematics over the past 100 years belong to group theory. Thus, in studying
groups we are laying the groundwork for an understanding of mathematics as
a whole, while contacting with an area of current research. Groups are simply
defined, and we can construct a multitude of examples with which to make
calculations or conjectures. We can exploit a small number of facts again and
again in a wide variety of problems. Therefore, the subject is concrete and
self-contained, which makes it ideal for providing firsthand experience with
mathematics.

Firsthand experience will occur only as you diligently pursue mastery of the
course content in order to gain problem solving ability and the skill of algebraic
work. You will not benefit from the text unless you read it very aggressively,
using your ability to reproduce the various arguments to test understanding.
To repeat: you do not know or understand a subject in mathematics unless
you can work out its main theorems from the ground up on your own. Thus,
mathematical exposition tends toward the sparing side. It is assumed that the
reader works through the arguments thoroughly and carefully.

In class we will work hard at understanding the theorems proved in the text,
and we will work a variety of problems, showing how to apply the material.

At the end of each chapter, you will find select bibliography for many of the
text topics. A library search over classifications QA150-272 will yield many,
many texts that cover the material in this book, so you can find alternative
points of view, additional problems, and other topics, if you wish.



CHAPTER 1

Logic and Sets.

Mathematics is easy to describe: you have a list of statements that you

accept as true, and you construct examples and derive logical conclusions

from those statements. The original statements are called axioms and the

conclusions are called propositions or theorems. The purpose of this chapter

is to introduce you to the language used to state the axioms and to derive the

conclusions.

Mathematicians think in at least two ways; we might say formally and

intuitively. Every mathematical argument is a formal display of precisely de-

fined objects and strictly logical manipulations. Without precision and clarity

you do not have mathematics, and to learn mathematics you need to learn to

recognize when an object is well-defined, when a proof is correct and complete.

But the objects and logical bindings are not interesting and not memorable

unless they correspond, intuitively, with notions in the mind that are familiar

and appreciated. Furthermore, you will never make much progress in pro-

ducing mathematics unless you learn to think intuitively about the objects

and arguments, creatively employing various metaphors or pictures. Visual or

poetic images bring abstract objects to life. The skill of the mathematician

consists in being able to combine these approaches: to be able to imagine a

formal, abstract object pictorially; to be able to translate intuitive thought

into formal language.

On the formal level, the positive integers form a set with certain definite

properties (we will write down these properties momentarily). Intuitively,

1



2 1. LOGIC AND SETS.

you have all sorts of thoughts in your mind involving the positive integers:

you might remember the manipulatives you used in learning to count, you

might imagine marks on a number line, you might visualize 2 · 3 = 6 as

counting the entries in a table with 2 rows and 3 columns, etc. Formally

speaking, understanding a proof about the positive integers is an exercise

in matching clearly defined properties with logical statements about them;

intuitively speaking, understanding a proof is an exercise in seeing a pattern

of sensible thought. The important facts are not arbitrarily chosen, rather,

they are aesthetically interesting, displaying a sense of beauty or elegance,

whether we are talking about the practical beauty of the solution to an applied

problem or the ethereal beauty of a symmetry in music or a painting. Aesthetic

appreciation and formal understanding go hand in hand.

There are several formal ways to build mathematics from the ground up;

the one we will use has been the most widely followed since the late 1800’s.

We want to introduce the formal vocabulary of set theory in which most math-

ematical statements may be constructed. First of all, we will discover what is

meant by statement through examples. After we are familiar with some types

of statements, we might have time to give a formal definition in class. We need

to assume that the mathematical statements we encounter are either true or

false, and not both. It is possible to formulate statements in general that are

neither true nor false, either because they are meaningless or for other reasons;

since we will deal only with statements that are true or false, we will not go

into this any further.

Mathematical statements are put together with logical connectives that we

now list. If we are given a statement A, then its negation is denoted “not A.”

The negation of A is false if A is true, and it is true if A is false.

If we have statements A and B, then the statement “A and B” is true if

both A and B are true, and it is false if either A or B is false.
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The statement “A or B” is true if either A or B, or both, is true, and it

is false if both A and B are false. It is worth noting that this use of the word

“or” is somewhat different than that of usual English. If, in everyday speech,

I say, “I am going to the store, or I am going to a movie,” I probably do not

mean that I am both going to the store and that I am also going to a movie.

If I did mean that both were true, I would have said, “I am going to the store

and to a movie.” In mathematics, however, the word “or” allows either or

both its constituent statements to be true.

A statement of the form “if A, then B” is an implication. This statement

can be written more symbolically: A ⇒ B. In such a compound statement,

the statement A is the hypothesis and B is the conclusion. An implication is

true if both its hypothesis and conclusion are true, and it is also true if the

hypothesis is false, regardless whether the conclusion is true or false. Thus,

the statement “if 2 + 2 = 4, then Paris is a city” is true, as is the statement

“if 1 = 0, then pigs have wings.” An implication like the second one, in which

the hypothesis is false, is said to be vacuous . There is an important role for

vacuous implications, as we will see later.

You can test your understanding of what we have done so far by showing

that the statement “A ⇒ B” is equivalent to “(not A) or B.” (Equivalent

statements are both true or both false.)

As we will point out in class, we need to distinguish between proving that

an implication is true and using an implication that is already known to be

true. Look for examples as you read through the following.

We now consider the contrapositive of an implication. The contrapositive

of the implication A⇒ B is the implication “(not B)⇒ (not A).” We aim to

show that an implication is equivalent to its contrapositive (they are both true

or both false). Let us consider the possibilities for A and B. If A and B are

true, then A⇒ B is true; also, (not B) is false, and so (not B)⇒ (not A) is
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true. If A is true and B is false, then A ⇒ B is false. And (not B) is true

and (not A) is false, so that (not B)⇒ (not A) is false. There are two other

cases. Do them!1

The converse of the implication A ⇒ B is the implication B ⇒ A. In

general, an implication can be true without its converse being true, and an

implication can be false without its converse being false. (Can you think of an

example?)

Notice that we can express that A and B are equivalent by “A⇒ B and

B ⇒ A.” Indeed, if A and B are both true, then “A ⇒ B and B ⇒ A” is

true. If A and B are both false, then, again, “A ⇒ B and B ⇒ A” is true.

On the other hand, if A is true and B is false, then A ⇒ B is false, and so

“A⇒ B and B⇒ A” is false. We leave the remaining case to you. We often

say that A and B are equivalent by saying “A if and only if B.” This is also

written A⇐⇒ B.

Now we are ready for sets. Intuitively, a set is a collection of objects,

and, most of the time, the intuitive view is helpful. If we can list the objects,

we enclose the list in curly brackets to indicate the set: A = {1, 2, 3}. This

identifies A as a set – the collection consisting of the numbers 1, 2, 3. We write

1 ∈ A (read 1 is an element of A) to indicate that 1 is in the collection called

A. Similarly 2 ∈ A and 3 ∈ A. We write 4 /∈ A to indicate that 4 is not one

of the elements in the set A. The symbol ∈ should be distinguished from the

Greek letter epsilon (ε).

The intuitive point of view is that a set is a collection of objects. On a

formal level, the word set is undefined; we say it is accepted axoimatically. In

order to work with sets, we will need to state their formal properties. Formally,

every mathematical object considered in this course is a set.

1In class we will say over and over that you have to read mathematics actively, working
out details, going back over anything that is the least obscure, always asking yourself whether
you can reproduce what you have learned.
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Wait a minute; the number 2, being a mathematical object, must be a

set! It is not supposed to be obvious at this point what it means for 2 to be

a “collection,” in fact the answer is quite subtle so don’t try to guess at it.

It may well seem strange to regard numbers and functions and other familiar

things as sets. You will get over this strangeness after working with sets for a

while. The immediate point is that “set” is a formal term; it is often but not

always helpful to think of a set as a collection – when it is helpful, it is helpful

on the intuitive level. As we begin to work with sets, the intuitive idea of a

collection will guide us charmingly.

Given sets x, S, the statement x ∈ S is either true or false – it is either true

of false that x belongs to the collection defined by S. If x does not belong,

then x /∈ S is true. In other words, exactly one of these statements is true:

x ∈ S, x /∈ S. For the sets considered in mathematics, it is always the case

that if x ∈ S is true, then the statement S /∈ x is true. (Here is a chance to

think intuitively about collections. Why does this make sense?) Notice that

it follows that S ∈ S is always false. Why?

If all the elements of a set T are elements of a set S then T is a subset

of S, and we write T ⊆ S. Going back to our logical notions, the statement

T ⊆ S is equivalent to the statement (x ∈ T ) ⇒ (x ∈ S). For example,

every set is a subset of itself. Given two sets T and S, in order to prove that

T ⊆ S, you assume that x ∈ T and prove that x ∈ S. This implication also

introduces another type of expression. The implication (x ∈ T ) ⇒ (x ∈ S)

can be expressed “x ∈ S for all x ∈ T .”

Be careful to distinguish T ∈ S from T ⊆ S. The first statement says

that “T is one of the S’s,” the second “every T is an S.” Here is an intuitive

example: Jumbo is an element of the set of Elephants. The set of Baby

Elephants form a subset of the set of Elephants.
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Given a set S, the set of all its subsets is a (usually large) set. For example,

there are eight subsets of {1, 2, 3}; you should try writing them down!

Sets are equal if and only if they have the same elements. In other words,

S = T is equivalent to (x ∈ S)⇐⇒ (x ∈ T ). Another way to say this: S = T

if each is a subset of the other: S ⊆ T and T ⊆ S. Intuitively, when we say

that S = T , we are saying that “S” and “T” are different names for the same

thing. Formally, if S = T we can substitute T for S (or S for T ) in any true

statement to form another true statement.

It is trivial but mildly interesting to see that equality of sets obeys some

expected laws: we have S = S for all sets S. If S = T , then T = S. If

S = T and T = U , then S = U . Verifying each of these statements is a

straightforward exercise in logic – applying the precise definition of equality.

We want to introduce the main method for constructing new sets from old

ones. That method involves two auxiliary ideas. First, a statement can have

a variable in it. For instance, consider the statement “x is an integer and

x > 2.” This statement is true if x = 5 or if x = 7, and it is false if x = 1 or

x = 3.2 or x = {a, b}. The variable x in the statement is a free variable since

the statement doesn’t define what x is.

Our second idea involves the phrase “there is” (formally ∃), which posits

the existence of an object with given properties. The meaning of the statement

“there is x such that x is an integer and x > 2” is obvious. In the previous

paragraph, we considered the statement “x is an integer and x > 2” on its

own, true or false depending on x. The ”there is” asserts that the statement

can be true. The entire “there is” statement is true, since there is an integer

greater than 2.

Here is a more symbolical formulation, using Z for the set of integers:

∃x(x ∈ Z and x > 2). The ∃x prefix entails the assumption that x is a free

variable in the inner statement (surrounded by parentheses).
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The principal way that new sets are constructed from old ones is by what

is called the Axiom of Specification.2 To give an example, suppose I have

sets A,B and I want to identify the elements of A that are also elements of B.

(This is the intersection of A and B; that term will be discussed momentarily.)

The Axiom of Specification allows me to make the following definition:

C = {x ∈ A
∣∣ x ∈ B}

This is read, “Let C be the set of elements x of A such that x is an element of

B.” The vertical bar in the middle is read such that or for which. The upshot

is that C is a new set, and the statement x ∈ C is same as “x ∈ A and x ∈ B.”

Here is the general formulation of the Axiom. We are given a set A and a

statement S, and we define a new set C:

C = {x ∈ A
∣∣ S}

The statement S involves x as a free variable. You might think of S as a

property that a given x may or may not have, as in “x ∈ B.” The Axiom tells

us that the set C exists, and x ∈ C if and only if x ∈ A and the statement

S is true. So, the Axiom is a “there is” statement. Here is what it looks like

formally.

∃C
(
x ∈ C ⇐⇒ [x ∈ A and S]

)
An additional technicality is necessary to the construction of the last two

paragraphs. The symbol C, used to name the new set, cannot already be in

use to name something else. In particular, C cannot be the same symbol as

A, and C should not be mentioned in the statement S.

We have given some notation and have described how to construct subsets

of given sets. Up to now, we have not had the actual existence of any particular

set, so it’s time to assume that there is a set ! It doesn’t much matter what

2The Axiom of Specification has many other names: the axiom of subsets, the axiom of
selection, the axiom of separation.
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are the elements of this set; let’s call the set A. We are assuming the existence

of A axiomatically.3 As a first use of our set A, we construct another set, the

empty set . The Axiom of Specification constructs the set

φ = {x ∈ A
∣∣ x 6= x}

We can show that φ is a set with no elements at all! Indeed, if x ∈ φ, then

x ∈ A and x 6= x. This latter statement is false, and so it must be that x ∈ φ
is false.

The empty set can be used to form a famous vacuous implication: the

empty set is a subset of every set. The statement φ ⊆ S is the implication

(x ∈ φ)⇒ (x ∈ S). The hypothesis x ∈ φ is never true, for the empty set has

no elements, and therefore the implication is vacuous (and true!).

You probably remember what is meant by the union and intersection of

sets. Given sets S and T , there is a set S ∪ T (the union of S and T ) such

that x ∈ S ∪ T if and only if x ∈ S or x ∈ T . (Recall the meaning of “or,” it

is ok for x to be in both S and T .)

The intersection S∩T is such that x ∈ S∩T if and only if x ∈ S and x ∈ T .

We have already seen that intersections exist by the Axiom of Specification.

On the other hand, the existence of set unions does not follow from this axiom,

and so it must be stipulated on its own.

We say that S and T are disjoint if their intersection is the empty set.

Here is a fairly simple fact about unions and intersections. We use it to

occasion our first proof.

Proposition 1.1. Let A, B, and C be sets. Then

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

3You probably guessed that to accept something axiomatically is to accept it as an
axiom.
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Proof. The proof will be formal, but before you read the details, draw

an intuitive picture where the sets A,B,C are areas in the plane and see what

the proposition says. Does it look as if the proposition is true?

The definition of set equality shows that we need to prove that each set is

contained in the other. Thus, we first assume that x ∈ A∩ (B ∪C) and prove

that x ∈ (A ∩B) ∪ (A ∩ C), for this establishes

(1.1) A ∩ (B ∪ C) ⊆ (A ∩B) ∪ (A ∩ C)

Then we let x ∈ (A ∩ B) ∪ (A ∩ C), and prove that x ∈ A ∩ (B ∪ C),

concluding

(1.2) (A ∩B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C)

This will complete the proof that the sets are equal.

Now let x ∈ A ∩ (B ∪ C). Then x ∈ A and x ∈ (B ∪ C). This last says

that x ∈ B or x ∈ C. If x ∈ B, then since x ∈ A, we have that x ∈ (A ∩ B).

If x ∈ C, then since again x ∈ A, we have x ∈ (A ∩ C). Thus x ∈ (A ∩ B)

or x ∈ (A ∩ C), so that x ∈ (A ∩ B) ∪ (A ∩ C). This proves the containment

(1.1).

Let x ∈ (A∩B)∪(A∩C). Then x ∈ (A∩B) or x ∈ (A∩C). If x ∈ (A∩B),

then x ∈ A and x ∈ B, so that x ∈ A and x ∈ (B∪C), hence x ∈ A∩ (B∪C).

Similarly, if x ∈ (A ∩ C), then x ∈ A ∩ (B ∪ C), and this proves (1.2). �

Note our end of proof symbol: a modest open square. Some texts use the

abbreviation QED to end proofs. What does QED stand for?

There is one other construction we will need in working with sets. Given

sets A and B, there is a set A×B, the cartesian product of A and B, consisting

of all ordered pairs (a, b) where a ∈ A and b ∈ B. The xy-plane from your

calculus days is a cartesian product R×R where R is the set of real numbers

(we will not use the real numbers in this course). Two ordered pairs (a1, b1)

and (a2, b2) are equal if and only if a1 = a2 and b1 = b2. The existence of
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ordered pairs and cartesian products can be established using the axioms we

have already given, but in the interest of time we will not bother to pursue

this.4

Now we have almost everything we need to get started in mathematics. In

the next section we will examine what many would call the most basic set –

the set of integers.

A good introduction to doing mathematics is How to read and do proofs :

an introduction to mathematical thought process by Daniel Solow (Wiley 1982).

There are many books describing the use of set theory to build mathematics.

Naive Set Theory by P. Halmos gives an informal introduction that leaves

many details to the reader but does a good job explaining the purpose of

the various axioms. The more technical Axiomatic Set Theory by P. Bernays

(Dover, 1991) is at the advanced level, but it contains an excellent historical

introduction written by A. Fraenkel in which the axioms we have used are

described in more detail. This second book has an extensive bibliography.

There are other ways in which mathematics may be grounded. The article

The Education of a Pure Mathematician, by Bruce Pourciau in the American

Mathematical Monthly, October 1999, uses a Socratic dialogue to introduce

some of the philosophical questions involved. Beware that the issue of how

to get mathematics off the ground is not easy to resolve and that there is

no universally agreed upon philosophy of mathematics. Mathematicians are,

in the main, more interested in doing mathematics than in arguing about its

underpinnings.

4Except to try to intrigue you. Formally, (a, b) can be defined as {a, {a, b}}. Can you
show that this latter set exists? Hint: you need to make free use of the fact that the set of
all subsets of a set is, itself, a set.
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Problems

1. Let A,B,C be statements, each of which is either true or false Prove that

(A⇒ B and B⇒ C) ⇒ (A⇒ C)

(Note: This is a problem of logic. Consider the possible values true or false of

each statement.)

2. For statements A,B, define the statement “A xor B” to be true if A is

true and B is false, and it is true if A is false and B is true. The statement A

xor B is false otherwise. Show how to build this statement using and, or, not.

3. Let A,B be statements. Show that(
A⇒ B

)
⇐⇒

[(
not A

)
or B

]
4. Let A,B be statements. Show that the negation of “A and B” is the

statement “(not A) or (not B).”

5. Let A and B be statements. Use “not” and “and” to write the negation

of the statement A⇒ B.

6. Show that if A is a subset of B, and B is a subset of C, then A is a subset

of C.

7. For sets A,B, define

A \B = {x ∈ A
∣∣ x /∈ B}

Prove the following, for sets A,B,C.

(a) A \B = A if and only if A ∩B = φ

(b) A \ (B ∪ C) = (A \B) ∩ (A \ C)

(c) A \ (B ∩ C) = (A \B) ∪ (A \ C)
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8. Let A,B be sets. Prove that

A ∪B = (A \B) ∪ (B \ A) ∪ (A ∩B)

9. For sets A,B,C, show that (A ∪B) \ C = (A \ C) ∪ (B \ C).

10. In mathematics there is no universe. In other words, there can’t be a set

having every set as a subset of it. Prove this. (Assume that A is a universe

and derive a contradiction.)

11. Suppose that A,B are sets. Show that there is a set whose elements

are A,B. (Hint: The set would be denoted {A,B}, but you need to use the

axioms to define it; start with the set of all subsets of A and the set of all

subsets of B.)

12. Use the notations of formal set-theory and logic to express that the set

S has exactly one element. (Hint: you might start with “there is x ∈ S.”)

13. Use the notation of formal set-theory to express that the set S has exactly

two elements.

14. Let A = {1, 2} and B = {3, 4, 5} and C = {6, 7}.
(a) Write down the elements of A×B.

(b) Write down the elements of (A×B)× C.

15. For sets A,B,C show that A× (B ∪ C) = (A×B) ∪ (A× C).
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bijection, 40
bijective, 40
bounded above, 20
bounded below, 20

canonical homomorphism, 122
cartesian product, 9
Cauchy’s Theorem, 141
Cauchy’s Theorem for Abelian

Groups, 113
center (of a group), 94
centralizer of x (in the group G),

94
Chinese Remainder Theorem, 161
class equation, 140
commutative ring, 147
composite function, 32
conclusion (of implication), 3
congruent, 25
congruent (matrices), 60
conjugacy class, 137
contrapositive, 3
converse, 4
Correspondence Theorem, 114
coset, 101
cycle, 46

cyclic group, 71

degree (of a polynomial), 152
dihedral group, 64
direct product (of groups), 65
disjoint, 8
disjoint (cycles), 47
divides, 23
Division Theorem, 23
domain, 147
domain (of a function), 31

edge, in a graph, 61
empty set, 8
equal (functions), 31
equivalence relation, 25
equivalent (statements), 3
even (permutation), 54
even integer, 25

Fermat’s Little Theorem, 164
field, 150
finite (set), 35
fixed points, 46
formal derivative (of a

polynomial), 159
free variable, 6
function, 31
function composition, 32
Fundamental Theorem of Abelian

Groups, 133
Fundamental Theorem of

Arithmetic, 82

GCD, 79
GCD Theorem, 79
general linear group, 86
generator (of a group), 71
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graph, finite, undirected, 61
greatest common divisor, 79
group homomorphism, 121
group isomorphism, 126

hypothesis (of implication), 3

identity element, 57
identity function, 32
image (of a function), 32
implication, 3
induction, 16
infinite order (of a group element),

76
infinite set, 42
injection, 40
injective, 40
integers, 13
intersection, 8
inverse (function), 35
inverse (of group element), 57
involution, 76
isomorphic (groups), 126

kernel (of a homomorphism), 122
Klein Four-Group, 66

Lagrange’s Theorem, 103
least common multiple, 74
left coset, 102
lower bound, 20

maximal element, 20
maximum (of a set of integers), 20
minimal counterexample, 111
minimum, 15
mod, 25
modulo, 25

modulus, 25

N/C Theorem, 136
negation, 2
normal subgroup, 109
normalizer, of a subgroup in a

group, 119

odd integer, 25
one to one (function), 33
onto (function), 33
operation, 39
or, logic, 3
order (of a group element), 73
order, of a finite set, 36
ordered pairs, 9

parity (of a permutation), 53
Parity Theorem on permutations,

53
Peano’s Axioms, 20
permutation, 45
pigeon-hole principle, 38
points, 45
polynomial, 152
preserves edges, 62
prime (natural number), 82
proper subgroup, 91
Pythagorean triple, 89

quaternion group, 87
quotient, 23
quotient group, 110

range ((not preferred)), 31
rational numbers, 172
reflection, 63
remainder, 23
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ring (commutative), 147
root (of a polynomial), 157
rotation, 63

semi-direct product, 132
set, 4
simple group, 116
special linear group, 61
square-free (natural number), 88
subgroup, 91
subset, 5
such that, 7
surjection, 40
surjective, 40
Sylow subgroup, 141
Sylow’s Theorem (existence), 140
symmetry (of a graph), 62

totient function, 96, 161

union, 8
unique factorization, 85
units (of a ring), 149
units group mod n, 86
upper bound, 20
upper triangular matrices, 91

vacuous (implication), 3
vertex, in a graph, 61

well-ordering in the integers, 20
well-ordering of the natural

numbers, 16

xor, exclusive or, 11

zero polynomial, 153


