math 535, Spring 2016 - Parks

COMPLEX ANALYSIS PROBLEMS

The sections correspond to the sections of the Notes.

2. The Complex Plane

1. Find a polar representation for the following complex numbers: $1,-1, i,-i$, $-3+3 \cdot i, \sqrt{3}-i$.
2. Prove that $\exp (i \cdot \alpha)^{n}=\exp (i \cdot n \cdot \alpha)$ for all $\alpha \in \mathbb{R}$ and $n \in \mathbb{Z}$. (Hint: induction on n for $n \geq 0$. Then do the case $n<0$.)
3. Use DeMoivre's Theorem to find the rectangular representation of the three numbers w such that $w^{3}=i$. Your representation should not involve the cosine or sine functions.
4. Find the rectangular representation for the four numbers w such that $w^{4}=-16$. Your representation should not involve the cosine or sine functions.
5. Show that $\overline{1 / z}=1 / \bar{z}$ for all non-zero complex numbers z.
6. Let $M>0$. Define the open square $S(M)$ to be the set of $x+i \cdot y$ with $x, y \in \mathbb{R}$ such that $|x|<M$ and $|y|<M$. Let $A \subseteq \mathbb{C}$. Show that A is bounded if and only if there is $M>0$ such that if $A \subseteq S(M)$.
7. Let $z \in \mathbb{C}$. Show that $\mathbb{C} \backslash\{z\}$ is open.
8. Prove that $\bar{D}(z ; r)$ is closed in \mathbb{C} for all $z \in \mathbb{C}$ and $r>0$.
9. Prove that every finite subset of the complex numbers is closed. (Hint: easier if you use Proposition 7.)

3. Limits and Continuity

10. Let $f: \mathbb{R} \rightarrow \mathbb{C}$, and let $c \in \mathbb{C}$. Apply the ϵ, δ definition without the requirement of the limit point to show that

$$
\lim _{z \rightarrow i} f(z)=c
$$

(In other words, since i is not a limit point of \mathbb{R}, the "limit" is arbitrary.)
11. Let $A \subseteq \mathbb{C}$ and $f: A \rightarrow \mathbb{C}$ and let c be a limit point of A. Write $f=u+i \cdot v$, its real and imaginary parts, so that $u, v: A \rightarrow \mathbb{R}$. Write $L=L_{1}+i \cdot L_{2}$, where $L_{1}, L_{2} \in \mathbb{R}$. Show that

$$
\lim _{z \rightarrow c} f(z)=L \quad \text { if and only if } \quad \lim _{z \rightarrow c} u(z)=L_{1} \quad \text { and } \quad \lim _{z \rightarrow c} v(z)=L_{2}
$$

12. Let $f(z)$ and $g(z)$ be non-zero polynomials of the same degree n, and let f_{n} and g_{n} be their respective leading coefficients. Show that

$$
\lim _{|z| \rightarrow \infty} \frac{f(z)}{g(z)}=\frac{f_{n}}{g_{n}}
$$

(Hint: use the $1 / z$ limit.)
13. Let $A \subseteq \mathbb{C}$ and let $f: A \rightarrow \mathbb{C}$ be continuous. Let $w \in \mathbb{C}$ and let T be the set of $z \in A$ such that $f(z)=w$. Show that T is a closed subset of \mathbb{C}.

4. The Derivative

14. Let n be an integer and define $f(z)=z^{n}$ for all $z \in \mathbb{C}$ (have $z \neq 0$ when $n<0$). Show that $f^{\prime}(z)=n \cdot z^{n-1}$ by following these steps.
(a) Calculate the derivative of $z^{0}=1$ from the definition.
(b) Use induction and product rule to show get the formula for $n \geq 0$.
(c) Use the quotient rule to get the formula for $n<0$.

5. The Cauchy-Riemann Equations

15. Verify the Cauchy-Riemann equations for $f(z)=z^{3}-2 \cdot z$.
16. Verify the Cauchy-Riemann equations for $f(z)=1 / z$. (Hint: we have formulas for the real and imaginary parts of $1 / z$.)
17. Let $w \in \mathbb{C}$ and $r>0$, and let $f: D(w ; r) \rightarrow \mathbb{R}$ be holomorphic. Show that f is constant. (Hint: Cauchy-Riemann and equation (1) on p. 2 of the Notes.
18. Let $f(x+i \cdot y)=x \cdot y$, for all $x, y \in \mathbb{R}$. Define A to be the set of $x+i \cdot x$, for all $x \in \mathbb{R}$. Show that if we consider $f: A \rightarrow \mathbb{R}$, then $f^{\prime}(x+i \cdot y)=2 \cdot x$. (Note: it follows from the previous problem that if we consider $f: \mathbb{C} \rightarrow \mathbb{R}$, then it does not have a derivative; in other words, f is not holomorphic.)
19. Show that $u(x, y)=e^{x} \cdot \cos (y)$ and $v=e^{x} \cdot \sin (y)$ satisfy the conditions of Proposition 14 on \mathbb{C}. (The holomorphic function that results will be seen to be the exponential function $\exp (z)=e^{z}$.)
20. Let V be the (open) set of all complex numbers with positive real part. For $x+i \cdot y \in V$, define $v(x, y)=\arctan (y / x)$. Define $u(x, y)=\ln \left(\sqrt{x^{2}+y^{2}}\right)$. Show that u, v satisfy the conditions of Proposition 14 on V. (The holomorphic function that results is the natural logarithm - the inverse function to the exponential.)

6. Taylor Series: Analytic Functions

21. If a_{n} is non-zero constant, then every positive number $r \leq 1$ is a radius for a_{n}. If $a_{n}=t^{n}$ for some non-zero complex number t, then r is a radius if and only if $r \leq 1 /|t|$.
22. Show that the given sequences have the claimed ratio limit as in the Ratio Test.

sequence	limit	notes
1	1	k is constant
n^{k}	1	
$1 / n!$	∞	
r^{n}	$1 /\|r\|$	r is a non-zero constant

7. Exponential, Cosine, Sine, Logarithm

23. Show that $\sin (z)=0$ if and only if $z=\pi \cdot k$ for some integer k.
24. Define

$$
\cosh (z)=\frac{e^{z}+e^{-z}}{2} \quad \text { and } \quad \sinh (z)=\frac{e^{z}-e^{-z}}{2}
$$

(Note: cosh is pronounced coash, and sinh is sinch.)
(a) Show that $\cosh (0)=1$ and $\sinh (0)=0$ and that $\cosh ^{2}(z)-\sinh ^{2}(z)=1$.
(b) Show that $\cosh ^{\prime}(z)=\sinh (z)$ and $\sinh ^{\prime}(z)=\cosh (z)$.
(c) Find (nice) series formulas for $\cosh (z)$ and $\sinh (z)$.
(d) Show that $\cos (i \cdot z)=\cosh (z)$ and $\sin (i \cdot z)=i \cdot \sinh (z)$.
25. Use the previous problem to find the real and imaginary parts of $\cos (x+i \cdot y)$ and $\sin (x+i \cdot y)$, where $x, y \in \mathbb{R}$.
26. Show that $L(x+i y)=\ln |(x, y)|+i \cdot \arctan (y / x)$ maps S_{1} onto T_{1}, where T_{1} is the set of complex numbers $a+i \cdot b$ such that $-\pi / 2<b<\pi / 2$.
27. Let $A(x, y)=\cot ^{-1}(x / y)$ for $(x, y) \in S_{2}$. Show that

$$
\frac{\partial A}{\partial x}=-\frac{y}{x^{2}+y^{2}} \quad \text { and } \quad \frac{\partial A}{\partial y}=\frac{x}{x^{2}+y^{2}}
$$

Thus, $u(x, y)=\ln \sqrt{x^{2}+y^{2}}$ along with $A(x, y)$ satisfy the Cauchy-Riemann equations and have continuous first partial derivatives on S_{2}.
28. Show that $\log ^{\prime}(z)=1 / z$. (Hint: $\left.\log (\exp (z))=z\right)$.)
29. Show that the function \log on S_{1} agrees with \log on S_{2}, on $S_{1} \cap S_{2}$. (The set $S_{1} \cap S_{2}$ is the open first quadrant!)
30. Let $w \in S$, and let $w=x+i \cdot y$ in rectangular. We want to find $r>0$ with $D(w ; r) \subset S$. Show that if $x \geq 0$, we can let $r=|w|$, whereas if $x<0$, we can use $r=|y|$.
31. Let $w \in S$ and get $r>0$ with $D(w ; r) \subset S$. Show that if $z \in D(w ; r)$, then $z / w \in D(1 ; 1)$.
32. Let $w \in S$ and get $r>0$ with $D(w ; r) \subset S$. Show that if $z \in D(w ; r)$, then $\log (z / w)=\log (z)-\log (w)$, using the following steps.
(a) Since $z / w \in D(1 ; 1)$, the number $\log (z / w)$ is defined. Use the Chain Rule to show that $\log (z / w)$ has the same derivative as $\log (z)$. (Here, z is the variable and w is constant.)
(b) Conclude (why?) that $\log (z)+C=\log (z / w)$ for some constant C.
(c) Use $z=w$ to determine C.
33. Observe that $\exp (3 \pi i / 4) \in S$, and that its square is in S. Show that

$$
\log \left([\exp (3 \pi i / 4)]^{2}\right) \neq 2 \cdot \log (\exp (3 \pi i / 4)
$$

(Note: in the real numbers $\ln \left(x^{2}\right)=2 \cdot \ln (x)$ for all $x>0$.)
34. For the function $R(z)$ defined on p. 21 of the Notes, show that the real and imaginary parts of $R(z)=u+i \cdot v$ are these:

$$
u(x, y)=\sqrt{\frac{x+\sqrt{x^{2}+y^{2}}}{2}} \quad \text { and } \quad v(x, y)=\frac{y}{2 \cdot u}
$$

(Hint: start by showing that $u>0$ for all $z \in S$. Find v first.)
35. Define $L(z)=\log (z)+2 \pi i$, for all $z \in S$. Show that $L(z)$ is also a logarithm: $L(\exp (z))=z$ and $\exp (L(z))=z$. Use $L(z)$ instead of $\log (z)$ to define the square root $R_{1}(z)$. What is $R_{1}(z)$ in terms of the square root $R(z)$ defined using $\log (z)$?
36. If α is a non-negative integer, then $\binom{\alpha}{n}=0$ for all $n>\alpha$, and every positive number is a radius for the sequence. Otherwise, all the terms are non-zero and 1 is a radius. (Hint for the case that α is not a non-negative integer: Ratio Test.)
37. For $\alpha \in \mathbb{C}$ and $w \in S$. Get $r>0$ with $D(w ; r) \subset S$, as in previous problems. Let $z \in D(w ; r)$. Show that $(z / w)^{\alpha}=\left(z^{\alpha}\right) /\left(w^{\alpha}\right)$. (Hint: a previous problem said something about $\log (z / w)$.)
38. Carefully complete the argument that formula (10) on p. 22 of the Notes is correct.
39. Prove the following formula of Newton.

$$
z^{-1 / 2}=\sum_{n=0}^{\infty} \frac{(-1)^{n} \cdot(2 n)!}{4^{n} \cdot n!\cdot n!} \cdot(z-1)^{n} \quad \text { for all } \quad z \in D(1 ; 1)
$$

40. Do we have the following identity?

$$
\left(z^{\alpha}\right)^{\beta}=z^{\alpha \cdot \beta}
$$

(where $z \in S$ and $\alpha, \beta \in \mathbb{C}$) Prove the identity, or find a counterexample.

8. Line Integrals

41. Let $g:[a, b] \rightarrow \mathbb{C}$ be a smooth curve. Define $h(t)=g(a+t \cdot(b-a))$ for $t \in[0,1]$, and show that h is a smooth curve with the same image as g. (Thus, we can assume that the domain of a smooth curve is $[0,1]$, if we find that convenient.)
42. Let $g:[a, b] \rightarrow \mathbb{C}$ be a smooth curve. Prove that $|g|=|-g|$. (Note: remember that $-g$ is not multiplication by -1 , but running g backwards.)
43. Show that the length of $L(p, q)$ is $|q-p|$.
44. Show that $-L(p, q)=L(q, p)$.
45. Prove that $|C(p ; r)|=2 \cdot \pi \cdot r$.
46. Let $c \in \mathbb{C}$ and let r be a positive real number. Show that

$$
\int_{C(c ; r)} \frac{d z}{z-c}=2 \pi i
$$

47. Evaluate these line integrals.
a) $\int_{C(0 ; r)} z \cdot d z$
b) $\int_{C(0 ; r)} \bar{z} \cdot d z$
48. Let a, b, c be co-linear elements of \mathbb{C}. Let $f(z)$ be continuous on the line through these points. Show that

$$
\int_{L(a, b)} f(z) \cdot d z+\int_{L(b, c)} f(z) \cdot d z=\int_{L(a, c)} f(z) \cdot d z
$$

(Hint: there is $q \in \mathbb{R}$ such that $b=a+q \cdot(c-a)$. Then $b=c-(1-q) \cdot(c-a)$. Substitute $s=q \cdot t$ in the integrals over $L(a, b)$ and in $L(b, c)$.)
49. For $0 \leq t \leq 1$, define $g(t)=t+i \cdot t$ and $h(t)=t+i \cdot t^{2}$, so that both g and h start at 0 and end at $1+i$. Define $P(x+i \cdot y)=x \cdot y$ and $Q(z)=z^{2}$. Evaluate these line integrals.
(a) $\int_{g} P \cdot d z$
(b) $\int_{h} P \cdot d z$
(c) $\int_{g} Q \cdot d z$
(d) $\int_{h} Q \cdot d z$
50. Let $G=<L(-1,-i), L(-i, 1)$, $\operatorname{arc}(0,1,0, \pi)>$. Compute
a) $\int_{G} e^{z} \cdot d z$
b) $\int_{G} \frac{d z}{z}$
(Hint: Property 5 can be applied to the integral over each smooth curve piece. This makes (a) easy! In (b), be careful with the branch of the logarithm - you can't use the same one on each piece.)

9. Goursat's Theorem

51. Prove a version of Goursat's Theorem where a chain rectangle is used in place of a chain triangle.

10. Cauchy's Theorem

52. Let $c \in \mathbb{C}$ and let r be a positive real number. Show that $D(c ; r)$ is star-like.
53. Let V be a star-like subset of \mathbb{C}, and suppose that a, b are base points. Show that every point on the line segment from a to b is a base point.
54. In Section 7 of the Notes we defined the set S consisting of those complex numbers that are not non-positive real numbers. Show that S is star-like.
55. Let V be the set of $x+i \cdot y \in \mathbb{C}$ such that either $x \neq 0$ or $y>0$. Show that the set V is star-like with base point i, and that $1 / z$ is holomorphic on V. We will find a nice formula for the function

$$
F(z)=\int_{L(i, z)} \frac{d v}{v} \quad \text { for all } \quad z \in V
$$

(Of course, $F(z)$ will be a logarithm.) Let $z \in V$, let $\theta \in \operatorname{Arg}(z)$ with $-\pi / 2<\theta<$ $3 \pi / 2$, and show that the following is a closed chain in V :

$$
<L(i, z), \operatorname{arc}(|z|, \alpha, 0), L(|z|, 1), \operatorname{arc}(1,0, \pi / 2)>
$$

Use this closed chain along with Cauchy's Theorem to compute the integral over $L(i, z)$ in terms of integrals that are easy to compute.

11. Null Chains and Equivalent Chains

56. Let $c \in \mathbb{C}$ and let $p>0$. Let $0<r<q<p$. Then $C(c ; r)$ is equivalent to $C(c ; q)$ on $D(c ; p) \backslash\{c\}$.
57. Let $c \in \mathbb{C}$ and let $p>0$, and let V be an open set containing $\bar{D}(c ; p)$. Let $b \in \bar{D}(c ; p)$. Let $r>0$ with $C(b ; r)$ contained in $\bar{D}(c ; p)$. Then $C(c ; p)$ and $C(b ; r)$ are equivalent on $V \backslash\{b\}$.
58. Show that $<C(0 ; 3)>$ is equivalent to $<C(-1 ; 1), C(1 ; 1)>$ on $\mathbb{C} \backslash\{-1,1\}$.
59. Evaluate the following without computing any antiderivatives.

$$
\int_{C(0 ; 3 / 2)} \frac{d z}{z^{2}+z-2}
$$

12. Cauchy's Integral Formula

60. Let

$$
G=<L(1, i), L(i,-1), L(-1,-i), L(-i, 1)>
$$

The image of G is a square. Compute

$$
\int_{G} \frac{d z}{z^{3}}
$$

(Hint: show that G is equivalent to $C(0 ; 1)$ on the domain of $1 / z^{3}$.)
61. Evaluate the following.

$$
\int_{C(0 ; 3)} \frac{z}{z^{2}-1} \cdot d z
$$

(Hint: A previous problem showed that $C(0 ; 3)$ is equivalent to two circles centered at $-1,1$, respectively.)
62. Evaluate the following integrals. We will use the triangle Q :

$$
\begin{aligned}
& Q=<L(-1+3 i / 2,3 / 2-i), L(3 / 2-i, 3 / 2+3 i / 2), L(3 / 2+3 i / 2 .-1+3 i / 2)> \\
& \begin{array}{ll}
\text { (a) } \int_{C(\pi ; 1)} \frac{1}{\sin (z)} \cdot d z & \text { (b) } \int_{Q} \frac{1}{z^{2}+1} \cdot d z \\
& \text { (c) } \int_{C(0 ; 1)} \frac{1}{\exp (z)-1} \cdot d z
\end{array}
\end{aligned}
$$

(Note: don't forget to prove that the relevant function is holomorphic where you need it to be.) (Hint for (a), (c), and (d): the appropriate limits can be calculated from series without using L'Hospital's Rule - which latter fact hasn't been proved.)
63. Evaluate the following integral. (Hint: separate the two singularities.)

$$
\int_{C(\pi / 2 ; 2)} \frac{\exp (z)}{\sin (z)} \cdot d z
$$

64. A star-like set is path connected. There are path connected open sets that are not star-like.

13. Holomorphic Functions are Analytic

65. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=-x^{2}$ when $x<0$, and $f(x)=x^{2}$ when $x \geq 0$. Show that $f(x)$ is differentiable but that $f^{\prime \prime}(0)$ does not exist. (This simple example shows that nothing like Theorem 25 can be true in the reals.)
66. Let $g(z)$ be defined on the unit circle: $g(z)=0$ for z below the x-axis; $g(z)=1$ on or above the x-axis. Define

$$
a_{k}=\frac{1}{2 \pi i} \cdot \int_{C(0 ; 1)} \frac{g(z)}{z^{k+1}} \cdot d z
$$

Find a nice formula for the a_{k} to make it obvious that $\sum_{k=0}^{\infty} a_{k} \cdot z^{k}$ is holomorphic on $D(0 ; 1)$.
67. Show that $\sin (1 / z)$ and the constant function 0 agree on a converging sequence of z-values. Yet the two functions are not equal. Why does that not violate Theorem 27 ?

