
math 535, Spring 2016 – Parks

COMPLEX ANALYSIS PROBLEMS

The sections correspond to the sections of the Notes.

2. The Complex Plane

1. Find a polar representation for the following complex numbers: 1, −1, i, −i,
−3 + 3 · i,

√
3− i.

2. Prove that exp(i · α)n = exp(i · n · α) for all α ∈ R and n ∈ Z. (Hint: induction
on n for n ≥ 0. Then do the case n < 0.)

3. Use DeMoivre’s Theorem to find the rectangular representation of the three
numbers w such that w3 = i. Your representation should not involve the cosine or
sine functions.

4. Find the rectangular representation for the four numbers w such that w4 = −16.
Your representation should not involve the cosine or sine functions.

5. Show that 1/z = 1/z for all non-zero complex numbers z.

6. Let M > 0. Define the open square S(M) to be the set of x+ i · y with x, y ∈ R
such that |x| < M and |y| < M . Let A ⊆ C. Show that A is bounded if and only if
there is M > 0 such that if A ⊆ S(M).

7. Let z ∈ C. Show that C \ {z} is open.

8. Prove that D(z; r) is closed in C for all z ∈ C and r > 0.

9. Prove that every finite subset of the complex numbers is closed. (Hint: easier if
you use Proposition 7.)

3. Limits and Continuity

10. Let f : R→ C, and let c ∈ C. Apply the ε, δ definition without the requirement
of the limit point to show that

lim
z→i

f(z) = c

(In other words, since i is not a limit point of R, the “limit” is arbitrary.)

11. Let A ⊆ C and f : A→ C and let c be a limit point of A. Write f = u+ i · v,
its real and imaginary parts, so that u, v : A → R. Write L = L1 + i · L2, where
L1, L2 ∈ R. Show that

lim
z→c

f(z) = L if and only if lim
z→c

u(z) = L1 and lim
z→c

v(z) = L2

1
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12. Let f(z) and g(z) be non-zero polynomials of the same degree n, and let fn
and gn be their respective leading coefficients. Show that

lim
|z|→∞

f(z)

g(z)
=
fn
gn

(Hint: use the 1/z limit.)

13. Let A ⊆ C and let f : A → C be continuous. Let w ∈ C and let T be the set
of z ∈ A such that f(z) = w. Show that T is a closed subset of C.

4. The Derivative

14. Let n be an integer and define f(z) = zn for all z ∈ C (have z 6= 0 when n < 0).
Show that f ′(z) = n · zn−1 by following these steps.

(a) Calculate the derivative of z0 = 1 from the definition.
(b) Use induction and product rule to show get the formula for n ≥ 0.
(c) Use the quotient rule to get the formula for n < 0.

5. The Cauchy-Riemann Equations

15. Verify the Cauchy-Riemann equations for f(z) = z3 − 2 · z.

16. Verify the Cauchy-Riemann equations for f(z) = 1/z. (Hint: we have formulas
for the real and imaginary parts of 1/z.)

17. Let w ∈ C and r > 0, and let f : D(w; r) → R be holomorphic. Show that f
is constant. (Hint: Cauchy-Riemann and equation (1) on p.2 of the Notes.

18. Let f(x+ i · y) = x · y, for all x, y ∈ R. Define A to be the set of x+ i · x, for
all x ∈ R. Show that if we consider f : A → R, then f ′(x + i · y) = 2 · x. (Note: it
follows from the previous problem that if we consider f : C → R, then it does not
have a derivative; in other words, f is not holomorphic.)

19. Show that u(x, y) = ex · cos(y) and v = ex · sin(y) satisfy the conditions of
Proposition 14 on C. (The holomorphic function that results will be seen to be the
exponential function exp(z) = ez.)

20. Let V be the (open) set of all complex numbers with positive real part. For

x + i · y ∈ V , define v(x, y) = arctan(y/x). Define u(x, y) = ln(
√
x2 + y2). Show

that u, v satisfy the conditions of Proposition 14 on V . (The holomorphic function
that results is the natural logarithm – the inverse function to the exponential.)
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6. Taylor Series: Analytic Functions

21. If an is non-zero constant, then every positive number r ≤ 1 is a radius for
an. If an = tn for some non-zero complex number t, then r is a radius if and only if
r ≤ 1/|t|.
22. Show that the given sequences have the claimed ratio limit as in the Ratio Test.

sequence limit notes
1 1
nk 1 k is constant

1/n! ∞
rn 1/|r| r is a non-zero constant

7. Exponential, Cosine, Sine, Logarithm

23. Show that sin(z) = 0 if and only if z = π · k for some integer k.

24. Define

cosh(z) =
ez + e−z

2
and sinh(z) =

ez − e−z

2
(Note: cosh is pronounced coash, and sinh is sinch.)

(a) Show that cosh(0) = 1 and sinh(0) = 0 and that cosh2(z)− sinh2(z) = 1.
(b) Show that cosh′(z) = sinh(z) and sinh′(z) = cosh(z).
(c) Find (nice) series formulas for cosh(z) and sinh(z).
(d) Show that cos(i · z) = cosh(z) and sin(i · z) = i · sinh(z).

25. Use the previous problem to find the real and imaginary parts of cos(x+ i · y)
and sin(x+ i · y), where x, y ∈ R.

26. Show that L(x+ iy) = ln |(x, y)|+ i · arctan(y/x) maps S1 onto T1, where T1 is
the set of complex numbers a+ i · b such that −π/2 < b < π/2.

27. Let A(x, y) = cot−1(x/y) for (x, y) ∈ S2. Show that

∂A

∂x
= − y

x2 + y2
and

∂A

∂y
=

x

x2 + y2

Thus, u(x, y) = ln
√
x2 + y2 along with A(x, y) satisfy the Cauchy-Riemann equa-

tions and have continuous first partial derivatives on S2.

28. Show that log′(z) = 1/z. (Hint: log(exp(z)) = z).)

29. Show that the function log on S1 agrees with log on S2, on S1 ∩ S2. (The set
S1 ∩ S2 is the open first quadrant!)
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30. Let w ∈ S, and let w = x + i · y in rectangular. We want to find r > 0 with
D(w; r) ⊂ S. Show that if x ≥ 0, we can let r = |w|, whereas if x < 0, we can use
r = |y|.

31. Let w ∈ S and get r > 0 with D(w; r) ⊂ S. Show that if z ∈ D(w; r), then
z/w ∈ D(1; 1).

32. Let w ∈ S and get r > 0 with D(w; r) ⊂ S. Show that if z ∈ D(w; r), then
log(z/w) = log(z)− log(w), using the following steps.

(a) Since z/w ∈ D(1; 1), the number log(z/w) is defined. Use the Chain Rule to
show that log(z/w) has the same derivative as log(z). (Here, z is the variable
and w is constant.)

(b) Conclude (why?) that log(z) + C = log(z/w) for some constant C.
(c) Use z = w to determine C.

33. Observe that exp(3πi/4) ∈ S, and that its square is in S. Show that

log
(
[exp(3πi/4)]2

)
6= 2 · log(exp(3πi/4)

(Note: in the real numbers ln(x2) = 2 · ln(x) for all x > 0.)

34. For the function R(z) defined on p.21 of the Notes, show that the real and
imaginary parts of R(z) = u+ i · v are these:

u(x, y) =

√
x+

√
x2 + y2

2
and v(x, y) =

y

2 · u

(Hint: start by showing that u > 0 for all z ∈ S. Find v first.)

35. Define L(z) = log(z) + 2πi, for all z ∈ S. Show that L(z) is also a logarithm:
L(exp(z)) = z and exp(L(z)) = z. Use L(z) instead of log(z) to define the square
root R1(z). What is R1(z) in terms of the square root R(z) defined using log(z)?

36. If α is a non-negative integer, then
(
α
n

)
= 0 for all n > α, and every positive

number is a radius for the sequence. Otherwise, all the terms are non-zero and 1 is
a radius. (Hint for the case that α is not a non-negative integer: Ratio Test.)

37. For α ∈ C and w ∈ S. Get r > 0 with D(w; r) ⊂ S, as in previous problems.
Let z ∈ D(w; r). Show that (z/w)α = (zα)/(wα). (Hint: a previous problem said
something about log(z/w).)

38. Carefully complete the argument that formula (10) on p.22 of the Notes is
correct.
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39. Prove the following formula of Newton.

z−1/2 =
∞∑
n=0

(−1)n · (2n)!

4n · n! · n!
· (z − 1)n for all z ∈ D(1; 1)

40. Do we have the following identity?

(zα)β = zα·β

(where z ∈ S and α, β ∈ C) Prove the identity, or find a counterexample.

8. Line Integrals

41. Let g : [a, b]→ C be a smooth curve. Define h(t) = g(a+t·(b−a)) for t ∈ [0, 1],
and show that h is a smooth curve with the same image as g. (Thus, we can assume
that the domain of a smooth curve is [0, 1], if we find that convenient.)

42. Let g : [a, b]→ C be a smooth curve. Prove that |g| = |− g|. (Note: remember
that −g is not multiplication by -1, but running g backwards.)

43. Show that the length of L(p, q) is |q − p|.

44. Show that −L(p, q) = L(q, p).

45. Prove that |C(p; r)| = 2 · π · r.

46. Let c ∈ C and let r be a positive real number. Show that∫
C(c;r)

dz

z − c
= 2πi

47. Evaluate these line integrals.

a)

∫
C(0;r)

z · dz b)

∫
C(0;r)

z · dz

48. Let a, b, c be co-linear elements of C. Let f(z) be continuous on the line through
these points. Show that∫

L(a,b)

f(z) · dz +

∫
L(b,c)

f(z) · dz =

∫
L(a,c)

f(z) · dz

(Hint: there is q ∈ R such that b = a + q · (c − a). Then b = c − (1 − q) · (c − a).
Substitute s = q · t in the integrals over L(a, b) and in L(b, c).)
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49. For 0 ≤ t ≤ 1, define g(t) = t+ i · t and h(t) = t+ i · t2, so that both g and h
start at 0 and end at 1 + i. Define P (x+ i · y) = x · y and Q(z) = z2. Evaluate these
line integrals.

(a)

∫
g

P · dz (b)

∫
h

P · dz

(c)

∫
g

Q · dz (d)

∫
h

Q · dz

50. Let G =< L(−1,−i), L(−i, 1), arc(0, 1, 0, π) >. Compute

a)

∫
G

ez · dz b)

∫
G

dz

z

(Hint: Property 5 can be applied to the integral over each smooth curve piece. This
makes (a) easy! In (b), be careful with the branch of the logarithm – you can’t use
the same one on each piece.)

9. Goursat’s Theorem

51. Prove a version of Goursat’s Theorem where a chain rectangle is used in place
of a chain triangle.

10. Cauchy’s Theorem

52. Let c ∈ C and let r be a positive real number. Show that D(c; r) is star-like.

53. Let V be a star-like subset of C, and suppose that a, b are base points. Show
that every point on the line segment from a to b is a base point.

54. In Section 7 of the Notes we defined the set S consisting of those complex
numbers that are not non-positive real numbers. Show that S is star-like.

55. Let V be the set of x + i · y ∈ C such that either x 6= 0 or y > 0. Show that
the set V is star-like with base point i, and that 1/z is holomorphic on V . We will
find a nice formula for the function

F (z) =

∫
L(i,z)

dv

v
for all z ∈ V

(Of course, F (z) will be a logarithm.) Let z ∈ V , let θ ∈ Arg(z) with −π/2 < θ <
3π/2, and show that the following is a closed chain in V :

< L(i, z), arc(|z|, α, 0), L(|z|, 1), arc(1, 0, π/2) >

Use this closed chain along with Cauchy’s Theorem to compute the integral over
L(i, z) in terms of integrals that are easy to compute.
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11. Null Chains and Equivalent Chains

56. Let c ∈ C and let p > 0. Let 0 < r < q < p. Then C(c; r) is equivalent to
C(c; q) on D(c; p) \ {c}.
57. Let c ∈ C and let p > 0, and let V be an open set containing D(c; p). Let
b ∈ D(c; p). Let r > 0 with C(b; r) contained in D(c; p). Then C(c; p) and C(b; r)
are equivalent on V \ {b}.
58. Show that < C(0; 3) > is equivalent to < C(−1; 1), C(1; 1) > on C \ {−1, 1}.
59. Evaluate the following without computing any antiderivatives.∫

C(0;3/2)

dz

z2 + z − 2

12. Cauchy’s Integral Formula

60. Let
G =< L(1, i), L(i,−1), L(−1,−i), L(−i, 1) >

The image of G is a square. Compute ∫
G

dz

z3

(Hint: show that G is equivalent to C(0; 1) on the domain of 1/z3.)

61. Evaluate the following. ∫
C(0;3)

z

z2 − 1
· dz

(Hint: A previous problem showed that C(0; 3) is equivalent to two circles centered
at −1, 1, respectively.)

62. Evaluate the following integrals. We will use the triangle Q:

Q =< L(-1 + 3i/2, 3/2-i), L(3/2-i, 3/2 + 3i/2), L(3/2 + 3i/2.-1 + 3i/2) >

(a)

∫
C(π;1)

1

sin(z)
· dz (b)

∫
Q

1

z2 + 1
· dz

(c)

∫
C(0;1)

1

exp(z)− 1
· dz (d)

∫
Q

z

log(z)
· dz

(Note: don’t forget to prove that the relevant function is holomorphic where you
need it to be.) (Hint for (a), (c), and (d): the appropriate limits can be calculated
from series without using L’Hospital’s Rule – which latter fact hasn’t been proved.)
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63. Evaluate the following integral. (Hint: separate the two singularities.)∫
C(π/2;2)

exp(z)

sin(z)
· dz

64. A star-like set is path connected. There are path connected open sets that are
not star-like.

13. Holomorphic Functions are Analytic

65. Define f : R → R by f(x) = −x2 when x < 0, and f(x) = x2 when x ≥ 0.
Show that f(x) is differentiable but that f ′′(0) does not exist. (This simple example
shows that nothing like Theorem 25 can be true in the reals.)

66. Let g(z) be defined on the unit circle: g(z) = 0 for z below the x-axis; g(z) = 1
on or above the x-axis. Define

ak =
1

2πi
·
∫
C(0;1)

g(z)

zk+1
· dz

Find a nice formula for the ak to make it obvious that
∑∞

k=0 ak · zk is holomorphic
on D(0; 1).

67. Show that sin(1/z) and the constant function 0 agree on a converging sequence
of z-values. Yet the two functions are not equal. Why does that not violate Theo-
rem 27?


