math 535, Spring 2016 – Parks

COMPLEX ANALYSIS PROBLEMS

The sections correspond to the sections of the Notes.

2. The Complex Plane

1. Find a polar representation for the following complex numbers: 1, -1, *i*, -*i*, $-3 + 3 \cdot i$, $\sqrt{3} - i$.

2. Prove that $\exp(i \cdot \alpha)^n = \exp(i \cdot n \cdot \alpha)$ for all $\alpha \in \mathbb{R}$ and $n \in \mathbb{Z}$. (Hint: induction on *n* for $n \ge 0$. Then do the case n < 0.)

3. Use DeMoivre's Theorem to find the rectangular representation of the three numbers w such that $w^3 = i$. Your representation should not involve the cosine or sine functions.

4. Find the rectangular representation for the four numbers w such that $w^4 = -16$. Your representation should not involve the cosine or sine functions.

5. Show that $1/z = 1/\overline{z}$ for all non-zero complex numbers z.

6. Let M > 0. Define the open square S(M) to be the set of $x + i \cdot y$ with $x, y \in \mathbb{R}$ such that |x| < M and |y| < M. Let $A \subseteq \mathbb{C}$. Show that A is bounded if and only if there is M > 0 such that if $A \subseteq S(M)$.

7. Let $z \in \mathbb{C}$. Show that $\mathbb{C} \setminus \{z\}$ is open.

8. Prove that $\overline{D}(z;r)$ is closed in \mathbb{C} for all $z \in \mathbb{C}$ and r > 0.

9. Prove that every finite subset of the complex numbers is closed. (Hint: easier if you use Proposition 7.)

3. LIMITS AND CONTINUITY

10. Let $f : \mathbb{R} \to \mathbb{C}$, and let $c \in \mathbb{C}$. Apply the ϵ, δ definition without the requirement of the limit point to show that

$$\lim_{z \to i} f(z) = c$$

(In other words, since i is not a limit point of \mathbb{R} , the "limit" is arbitrary.)

11. Let $A \subseteq \mathbb{C}$ and $f : A \to \mathbb{C}$ and let c be a limit point of A. Write $f = u + i \cdot v$, its real and imaginary parts, so that $u, v : A \to \mathbb{R}$. Write $L = L_1 + i \cdot L_2$, where $L_1, L_2 \in \mathbb{R}$. Show that

$$\lim_{z \to c} f(z) = L \quad \text{if and only if} \quad \lim_{z \to c} u(z) = L_1 \quad \text{and} \quad \lim_{z \to c} v(z) = L_2$$

12. Let f(z) and g(z) be non-zero polynomials of the same degree n, and let f_n and g_n be their respective leading coefficients. Show that

$$\lim_{|z| \to \infty} \frac{f(z)}{g(z)} = \frac{f_n}{g_n}$$

(Hint: use the 1/z limit.)

13. Let $A \subseteq \mathbb{C}$ and let $f : A \to \mathbb{C}$ be continuous. Let $w \in \mathbb{C}$ and let T be the set of $z \in A$ such that f(z) = w. Show that T is a closed subset of \mathbb{C} .

4. The Derivative

14. Let n be an integer and define $f(z) = z^n$ for all $z \in \mathbb{C}$ (have $z \neq 0$ when n < 0). Show that $f'(z) = n \cdot z^{n-1}$ by following these steps.

(a) Calculate the derivative of $z^0 = 1$ from the definition.

(b) Use induction and product rule to show get the formula for $n \ge 0$.

(c) Use the quotient rule to get the formula for n < 0.

5. The Cauchy-Riemann Equations

15. Verify the Cauchy-Riemann equations for $f(z) = z^3 - 2 \cdot z$.

16. Verify the Cauchy-Riemann equations for f(z) = 1/z. (Hint: we have formulas for the real and imaginary parts of 1/z.)

17. Let $w \in \mathbb{C}$ and r > 0, and let $f : D(w; r) \to \mathbb{R}$ be holomorphic. Show that f is constant. (Hint: Cauchy-Riemann and equation (1) on p.2 of the Notes.

18. Let $f(x + i \cdot y) = x \cdot y$, for all $x, y \in \mathbb{R}$. Define A to be the set of $x + i \cdot x$, for all $x \in \mathbb{R}$. Show that if we consider $f : A \to \mathbb{R}$, then $f'(x + i \cdot y) = 2 \cdot x$. (Note: it follows from the previous problem that if we consider $f : \mathbb{C} \to \mathbb{R}$, then it does not have a derivative; in other words, f is not holomorphic.)

19. Show that $u(x, y) = e^x \cdot \cos(y)$ and $v = e^x \cdot \sin(y)$ satisfy the conditions of Proposition 14 on \mathbb{C} . (The holomorphic function that results will be seen to be the exponential function $\exp(z) = e^z$.)

20. Let V be the (open) set of all complex numbers with positive real part. For $x + i \cdot y \in V$, define $v(x, y) = \arctan(y/x)$. Define $u(x, y) = \ln(\sqrt{x^2 + y^2})$. Show that u, v satisfy the conditions of Proposition 14 on V. (The holomorphic function that results is the natural logarithm – the inverse function to the exponential.)

6. TAYLOR SERIES: ANALYTIC FUNCTIONS

21. If a_n is non-zero constant, then every positive number $r \leq 1$ is a radius for a_n . If $a_n = t^n$ for some non-zero complex number t, then r is a radius if and only if $r \leq 1/|t|$.

22. Show that the given sequences have the claimed ratio limit as in the Ratio Test.

sequence	limit	notes
1	1	
n^k	1	k is constant
1/n!	∞	
r^n	1/ r	r is a non-zero constant

7. EXPONENTIAL, COSINE, SINE, LOGARITHM

23. Show that sin(z) = 0 if and only if $z = \pi \cdot k$ for some integer k.

24. Define

$$\cosh(z) = \frac{e^z + e^{-z}}{2}$$
 and $\sinh(z) = \frac{e^z - e^{-z}}{2}$

(Note: cosh is pronounced *coash*, and sinh is *sinch*.)

- (a) Show that $\cosh(0) = 1$ and $\sinh(0) = 0$ and that $\cosh^2(z) \sinh^2(z) = 1$.
- (b) Show that $\cosh'(z) = \sinh(z)$ and $\sinh'(z) = \cosh(z)$.
- (c) Find (nice) series formulas for $\cosh(z)$ and $\sinh(z)$.

(d) Show that $\cos(i \cdot z) = \cosh(z)$ and $\sin(i \cdot z) = i \cdot \sinh(z)$.

25. Use the previous problem to find the real and imaginary parts of $cos(x + i \cdot y)$ and $sin(x + i \cdot y)$, where $x, y \in \mathbb{R}$.

26. Show that $L(x+iy) = \ln |(x,y)| + i \cdot \arctan(y/x)$ maps S_1 onto T_1 , where T_1 is the set of complex numbers $a + i \cdot b$ such that $-\pi/2 < b < \pi/2$.

27. Let $A(x,y) = \cot^{-1}(x/y)$ for $(x,y) \in S_2$. Show that

$$\frac{\partial A}{\partial x} = -\frac{y}{x^2 + y^2}$$
 and $\frac{\partial A}{\partial y} = \frac{x}{x^2 + y^2}$

Thus, $u(x, y) = \ln \sqrt{x^2 + y^2}$ along with A(x, y) satisfy the Cauchy-Riemann equations and have continuous first partial derivatives on S_2 .

28. Show that $\log'(z) = 1/z$. (Hint: $\log(\exp(z)) = z$).)

29. Show that the function log on S_1 agrees with log on S_2 , on $S_1 \cap S_2$. (The set $S_1 \cap S_2$ is the open first quadrant!)

30. Let $w \in S$, and let $w = x + i \cdot y$ in rectangular. We want to find r > 0 with $D(w;r) \subset S$. Show that if $x \ge 0$, we can let r = |w|, whereas if x < 0, we can use r = |y|.

31. Let $w \in S$ and get r > 0 with $D(w; r) \subset S$. Show that if $z \in D(w; r)$, then $z/w \in D(1; 1)$.

32. Let $w \in S$ and get r > 0 with $D(w; r) \subset S$. Show that if $z \in D(w; r)$, then $\log(z/w) = \log(z) - \log(w)$, using the following steps.

- (a) Since $z/w \in D(1;1)$, the number $\log(z/w)$ is defined. Use the Chain Rule to show that $\log(z/w)$ has the same derivative as $\log(z)$. (Here, z is the variable and w is constant.)
- (b) Conclude (why?) that $\log(z) + C = \log(z/w)$ for some constant C.
- (c) Use z = w to determine C.

33. Observe that $\exp(3\pi i/4) \in S$, and that its square is in S. Show that

$$\log\left([\exp(3\pi i/4)]^2\right) \neq 2 \cdot \log(\exp(3\pi i/4))$$

(Note: in the real numbers $\ln(x^2) = 2 \cdot \ln(x)$ for all x > 0.)

34. For the function R(z) defined on p.21 of the Notes, show that the real and imaginary parts of $R(z) = u + i \cdot v$ are these:

$$u(x,y) = \sqrt{\frac{x + \sqrt{x^2 + y^2}}{2}}$$
 and $v(x,y) = \frac{y}{2 \cdot u}$

(Hint: start by showing that u > 0 for all $z \in S$. Find v first.)

35. Define $L(z) = \log(z) + 2\pi i$, for all $z \in S$. Show that L(z) is also a logarithm: $L(\exp(z)) = z$ and $\exp(L(z)) = z$. Use L(z) instead of $\log(z)$ to define the square root $R_1(z)$. What is $R_1(z)$ in terms of the square root R(z) defined using $\log(z)$?

36. If α is a non-negative integer, then $\binom{\alpha}{n} = 0$ for all $n > \alpha$, and every positive number is a radius for the sequence. Otherwise, all the terms are non-zero and 1 is a radius. (Hint for the case that α is not a non-negative integer: Ratio Test.)

37. For $\alpha \in \mathbb{C}$ and $w \in S$. Get r > 0 with $D(w;r) \subset S$, as in previous problems. Let $z \in D(w;r)$. Show that $(z/w)^{\alpha} = (z^{\alpha})/(w^{\alpha})$. (Hint: a previous problem said something about $\log(z/w)$.)

38. Carefully complete the argument that formula (10) on p.22 of the Notes is correct.

39. Prove the following formula of Newton.

$$z^{-1/2} = \sum_{n=0}^{\infty} \frac{(-1)^n \cdot (2n)!}{4^n \cdot n! \cdot n!} \cdot (z-1)^n \quad \text{for all} \quad z \in D(1;1)$$

40. Do we have the following identity?

$$(z^{\alpha})^{\beta} = z^{\alpha \cdot \beta}$$

(where $z \in S$ and $\alpha, \beta \in \mathbb{C}$) Prove the identity, or find a counterexample.

8. Line Integrals

41. Let $g: [a, b] \to \mathbb{C}$ be a smooth curve. Define $h(t) = g(a+t \cdot (b-a))$ for $t \in [0, 1]$, and show that h is a smooth curve with the same image as g. (Thus, we can assume that the domain of a smooth curve is [0, 1], if we find that convenient.)

42. Let $g : [a, b] \to \mathbb{C}$ be a smooth curve. Prove that |g| = |-g|. (Note: remember that -g is not multiplication by -1, but *running g backwards*.)

- **43.** Show that the length of L(p,q) is |q-p|.
- **44.** Show that -L(p,q) = L(q,p).
- **45.** Prove that $|C(p;r)| = 2 \cdot \pi \cdot r$.
- **46.** Let $c \in \mathbb{C}$ and let r be a positive real number. Show that

$$\int_{C(c;r)} \frac{dz}{z-c} = 2\pi i$$

47. Evaluate these line integrals.

a)
$$\int_{C(0;r)} z \cdot dz$$
 b) $\int_{C(0;r)} \overline{z} \cdot dz$

48. Let a, b, c be co-linear elements of \mathbb{C} . Let f(z) be continuous on the line through these points. Show that

$$\int_{L(a,b)} f(z) \cdot dz + \int_{L(b,c)} f(z) \cdot dz = \int_{L(a,c)} f(z) \cdot dz$$

(Hint: there is $q \in \mathbb{R}$ such that $b = a + q \cdot (c - a)$. Then $b = c - (1 - q) \cdot (c - a)$. Substitute $s = q \cdot t$ in the integrals over L(a, b) and in L(b, c).) **49.** For $0 \le t \le 1$, define $g(t) = t + i \cdot t$ and $h(t) = t + i \cdot t^2$, so that both g and h start at 0 and end at 1 + i. Define $P(x + i \cdot y) = x \cdot y$ and $Q(z) = z^2$. Evaluate these line integrals.

(a)
$$\int_{g} P \cdot dz$$
 (b) $\int_{h} P \cdot dz$
(c) $\int_{g} Q \cdot dz$ (d) $\int_{h} Q \cdot dz$

50. Let $G = \langle L(-1, -i), L(-i, 1), \operatorname{arc}(0, 1, 0, \pi) \rangle$. Compute

a)
$$\int_G e^z \cdot dz$$
 b) $\int_G \frac{dz}{z}$

(Hint: Property 5 can be applied to the integral over each smooth curve piece. This makes (a) easy! In (b), be careful with the branch of the logarithm – you can't use the same one on each piece.)

9. Goursat's Theorem

51. Prove a version of Goursat's Theorem where a chain rectangle is used in place of a chain triangle.

10. Cauchy's Theorem

52. Let $c \in \mathbb{C}$ and let r be a positive real number. Show that D(c; r) is star-like.

53. Let V be a star-like subset of \mathbb{C} , and suppose that a, b are base points. Show that every point on the line segment from a to b is a base point.

54. In Section 7 of the Notes we defined the set S consisting of those complex numbers that are not non-positive real numbers. Show that S is star-like.

55. Let V be the set of $x + i \cdot y \in \mathbb{C}$ such that either $x \neq 0$ or y > 0. Show that the set V is star-like with base point i, and that 1/z is holomorphic on V. We will find a nice formula for the function

$$F(z) = \int_{L(i,z)} \frac{dv}{v}$$
 for all $z \in V$

(Of course, F(z) will be a logarithm.) Let $z \in V$, let $\theta \in \operatorname{Arg}(z)$ with $-\pi/2 < \theta < 3\pi/2$, and show that the following is a closed chain in V:

$$< L(i, z), \operatorname{arc}(|z|, \alpha, 0), L(|z|, 1), \operatorname{arc}(1, 0, \pi/2) > 0$$

Use this closed chain along with Cauchy's Theorem to compute the integral over L(i, z) in terms of integrals that are easy to compute.

11. NULL CHAINS AND EQUIVALENT CHAINS

56. Let $c \in \mathbb{C}$ and let p > 0. Let 0 < r < q < p. Then C(c;r) is equivalent to C(c;q) on $D(c;p) \setminus \{c\}$.

57. Let $c \in \mathbb{C}$ and let p > 0, and let V be an open set containing $\overline{D}(c;p)$. Let $b \in \overline{D}(c;p)$. Let r > 0 with C(b;r) contained in $\overline{D}(c;p)$. Then C(c;p) and C(b;r) are equivalent on $V \setminus \{b\}$.

58. Show that $\langle C(0;3) \rangle$ is equivalent to $\langle C(-1;1), C(1;1) \rangle$ on $\mathbb{C} \setminus \{-1,1\}$.

59. Evaluate the following without computing any antiderivatives.

$$\int_{C(0;3/2)} \frac{dz}{z^2 + z - 2}$$

12. CAUCHY'S INTEGRAL FORMULA

60. Let

$$G = < L(1,i), L(i,-1), L(-1,-i), L(-i,1) >$$

The image of G is a square. Compute

$$\int_{G} \frac{dz}{z^3}$$

(Hint: show that G is equivalent to C(0; 1) on the domain of $1/z^3$.)

61. Evaluate the following.

$$\int_{C(0;3)} \frac{z}{z^2 - 1} \cdot dz$$

(Hint: A previous problem showed that C(0;3) is equivalent to two circles centered at -1, 1, respectively.)

62. Evaluate the following integrals. We will use the triangle Q:

$$Q = < L(-1 + 3i/2, 3/2 - i), L(3/2 - i, 3/2 + 3i/2), L(3/2 + 3i/2 - 1 + 3i/2) > 0$$

(a)
$$\int_{C(\pi;1)} \frac{1}{\sin(z)} \cdot dz$$
 (b)
$$\int_{Q} \frac{1}{z^2 + 1} \cdot dz$$

(c)
$$\int_{C(0;1)} \frac{1}{\exp(z) - 1} \cdot dz$$
 (d)
$$\int_{Q} \frac{z}{\log(z)} \cdot dz$$

(Note: don't forget to prove that the relevant function is holomorphic where you need it to be.) (Hint for (a), (c), and (d): the appropriate limits can be calculated from series without using L'Hospital's Rule – which latter fact hasn't been proved.)

63. Evaluate the following integral. (Hint: separate the two singularities.)

$$\int_{C(\pi/2;2)} \frac{\exp(z)}{\sin(z)} \cdot dz$$

64. A star-like set is path connected. There are path connected open sets that are not star-like.

13. HOLOMORPHIC FUNCTIONS ARE ANALYTIC

65. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = -x^2$ when x < 0, and $f(x) = x^2$ when $x \ge 0$. Show that f(x) is differentiable but that f''(0) does not exist. (This simple example shows that nothing like Theorem 25 can be true in the reals.)

66. Let g(z) be defined on the unit circle: g(z) = 0 for z below the x-axis; g(z) = 1 on or above the x-axis. Define

$$a_k = \frac{1}{2\pi i} \cdot \int_{C(0;1)} \frac{g(z)}{z^{k+1}} \cdot dz$$

Find a nice formula for the a_k to make it obvious that $\sum_{k=0}^{\infty} a_k \cdot z^k$ is holomorphic on D(0; 1).

67. Show that $\sin(1/z)$ and the constant function 0 agree on a converging sequence of z-values. Yet the two functions are not equal. Why does that not violate Theorem 27?